导 读

2025年11月11日,国际知名期刊《Journal of Advanced Research》在线发表了一项关于普洱生茶(Raw Pu-erh tea, RPT)的重要研究成果,揭示了仓储过程中水分活度(Water activity,Aw)通过调控微生物群落和代谢活性,进而塑造普洱生茶特征风味的内在机制。Aw能够更好的代表茶叶中自由水的含量,是比含水率更能体现水分对生化反应和微生物活动影响的指标。普洱生茶在其自然后发酵过程经过微生物、湿热作用、酶促反应及氧化等综合作用,形成“越陈越香”的独特品质。然而,微生物在此过程的参与机理,参与程度和对茶叶风味的调控机制,仍存在研究空白。本研究揭示了Aw通过调控微生物代谢影响普洱生茶的风味形成。
为阐明RPT仓储中不同Aw水平如何影响微生物群落结构及其驱动风味化合物形成的机制,该研究将RPT置于特定Aw下,综合运用内部转录间隔区(ITS)测序、气相色谱-质谱联用和液相色谱-质谱联用等技术,精准刻画了微生物群落的组成特征和风味代谢物的整体轮廓。进一步通过调节培养基Aw模拟真实仓储Aw条件,对核心菌株接种发酵实验,揭示了微生物动态演变与关键风味物质形成之间的内在联系。结果表明:Aw作为关键参数显著着影响RPT的微生物组成和风味演变,同时关系到仓储安全。Aw > 0.60富集了Papiliotrema、Hanella、ToxicocladosporiumPestalotiopsis等真菌属,密切影响着“陈味”相关的萜类物质(如α-松油醇、4-萜烯醇、雪松醇、芳樟醇)和“醇厚味”贡献物(包括黄酮生物碱和氨基酸衍生物)的积累。在模拟和现实仓储条件下,一种核心酵母分离物,浅黄隐球酵母(Papiliotrema flavescens)在Aw > 0.60 时表现出代谢活性,它产生的β-葡萄糖苷酶促进糖苷前体的水解和芳樟醇、水杨酸甲酯的积累,证实了浅黄隐球酵母在微生物驱动风味形成中的作用。然而,Aw水平超过0.70时,N,N-二甲基丙酰胺、甲苯和异佛尔酮等不良挥发性化合物产生积累。因此,Aw处于0.60–0.70的最佳范围可促进有益转化,同时最大限度地降低出现异味的风险。
该研究确立了水分活度(Aw)调控作为提升普洱生茶陈化品质的一项关键策略。首次构建的Aw调控框架,为在规模化仓储中实现普洱茶后发酵品质的精准预测与控制,提供了理论指导,同时这一框架也为将Aw调控模式推广至其它茶类提供了理论支撑。


英 文 摘 要


Introduction: The post-fermentation storage of raw Pu-erh tea (RPT) is a key process that contributes to the development of its characteristic aged flavor. Microbial activity plays a vital role in this transformation which strongly influenced by water activity (Aw). However, its specific effects on microbial community dynamics and associated metabolic contributions during RPT storage remain unclear.


Objectives: This study aims to elucidate the mechanisms by which different Aw levels shape microbial communities and drive flavor compound formation during RPT storage.


Methods: RPT samples were stored under defined Aw conditions, during which microbial communities were characterized using Internal Transcribed Spacer (ITS) sequencing, and flavor metabolites were analyzed through gas chromatography-mass spectrometry (GC–MS), liquid chromatography-mass spectrometry (LC-MS). Correlation analyses and core strain-inoculated fermentations under simulated and realistic Aw conditions were conducted to investigate the relationship between microbial dynamics and flavor evolution.


Results: Controlled Aw conditions significantly influenced the microbial composition and flavor chemistry of RPT. Aw above 0.60 enriched fungal genera such as PapiliotremaHannaellaToxicocladosporium, and Pestalotiopsis, which were strongly correlated with the accumulation of aging-associated terpenoids (e.g., α-terpineol, terpinen-4-ol, cedrol, linalool) and kokumi-active compounds including flavoalkaloids and amino acid derivatives. A core yeast isolate, Papiliotrema flavescens, exhibited metabolic activity at Aw > 0.60 under both simulated and realistic storage conditions. It produced β-glucosidase, which promoted the hydrolysis of glycosidic precursors and the accumulation of linalool and methyl salicylate, confirming its role in microbial-driven flavor development. However, Aw levels exceeding 0.70 promoted the formation of undesirable volatiles like N,N-dimethyl-propanamide, toluene, and isophorone, indicating potential quality deterioration.


Conclusion: Aw is a pivotal parameter that connects storage safety with microbial-driven flavor development in RPT. An optimal range of 0.60–0.70 promotes beneficial transformations while minimizing off-odor risks. These findings highlight Aw regulation as a practical and novel strategy for improving aging quality.


代 表 性 图 片

图片摘要


图1.水分活度(Aw)对储存的普洱生茶(RPT)中水分吸附行为和真菌群落多样性的影响。
(A)使用Peleg模型拟合RPT的水分吸附等温线。(B)不同Aw条件下RPT样品之间共有和特有ASVs的Venn图。(C)Chao1丰度指数和(D)Shannon多样性指数,代表α多样性。(E)基于Bray-Curtis相异度的主坐标分析(PCoA),代表β多样性。(F)不同Aw条件下优势真菌属的相对丰度。


图2. 不同水分活度(Aw)仓储条件下普洱生茶(RPT)挥发性代谢物(VMs)变化。
(A)维恩图。显示三个Aw水平下检测到的共有和特有VMs数量。(B)三个Aw水平下总VMs的相对质量浓度。(C)偏最小二乘判别分析(PLS-DA)得分图和(D)置换检验(显示基于VMs的三个储存Aw明显分离)。(E)与储存Aw和香气特征相关的差异VMs(VIP > 1,FDR校正q Spearman相关性分析(|ρ| > 0.85)。



图3. 不同水分活度(Aw)仓储条件下的普洱生茶(RPT)非挥发性代谢物(NVMs)的变化。
(A)偏最小二乘判别分析(PLS-DA)得分图和(B)置换检验(显示基于NVMs的三个储存Aw明显分离)(C)代谢物亚类的层级聚类显示RPT-B和RPT-C相似性高于RPT-A。(D)真菌属与NVMs Spearman相关性分析(|ρ| > 0.90)。



图4. 模拟仓储水分活度(Aw)条件下,浅黄隐球酵母(Papiliotrema flavescens RPT)的鉴定及其代谢活性呈现。
(A)P. flavescens RPT菌落在PDA培养基上的形态。(B)乳酚蓝染色下类酵母出芽的微观形态。(C)基于刃天青色差(ΔE)条件下的Aw水平间代谢活性。(D)不同Aw条件下(TA、TB、TC)发酵过程中茶汤茶氨酸含量动态变化。(E) (-)-表儿茶素(EC)和(-)-表没食子儿茶素(EGC)在TB和TC组中显著降低(p < 0.05)。(F)TB和TC组中类黄酮类化合物8-C-S-EC-cThea和8-C-S-EGC-cThea随时间推移积累。


图5. 真实仓储条件下,浅黄隐球酵母(Papiliotrema flavescens RPT)的产酶特性及其对茶叶代谢产物的调节作用。
(A) 对比未接种(NPF),P. flavescens多酚氧化酶(PPO)活性。(B) 对比NPF,P. flavescens过氧化物酶(POD)活性。(C) 对比NPF,P. flavescens β-葡萄糖苷酶(β-GC)活性。(D) P. flavescens RPT和NPF之间差异挥发性代谢产物以log2倍变化;正值表示接种组上调,负值表示下调。


文 章 作 者

本文作者属中国农业科学院茶叶研究所尹军峰研究员团队和南京农业大学园艺学院黎星辉教授团队。第一作者为马冰凇,云南农业大学茶学硕士,中国农业科学院茶叶研究所&南京农业大学联合培养博士在读;通讯作者为尹军峰研究员、石月助理研究员。


审稿:云南农业大学 周红杰 教授

来源: 中国茶叶学会

内容资源由项目单位提供