切丛是微分几何中最重要的概念之一,与之对偶的概念是余切丛。 很多重要的几何性质都和切丛及余切从有关。 它是研究微分几何的重要工具。

简介

切丛是微分流形M上的一种特殊的向量丛,一般记为T(M),它的秩就等于流形M的维数的两倍。切丛的截面就是我们说的切向量场。

几何直观上说, 切丛就是流形上每一点处的切空间“粘合”在一起得到的新流形--即向量丛。这是流形自带的一个向量丛,它反映了该流形的大范围性质和局部性质的联系。

应用

利用切丛和余切丛,可以得到(p,q)型张量。由此可以引入联络的概念,人们就可以像计算函数导数那样去描述切向量的变化。

很多几何概念都可以通过切丛和余切丛来定义。比如黎曼度量的概念也可以从切丛的局部化上定义,进而得到大范围上的度量。近复结构也可以利用切丛来定义。

向量丛

向量丛是一个几何构造,对于拓扑空间(或流形,或代数簇)的每一点用互相兼容的方式附上一个向量空间,所用这些向量空间"粘起来"就构成了一个新的拓扑空间(或流形,或代数簇)。

一个典型的例子是流形的切丛:对流形的每一点附上流形在该点的切空间。或者考虑一个平面上的光滑曲线,然后在曲线的每一点附上和曲线垂直的直线;这就是曲线的"法丛"。1

本词条内容贡献者为:

李嘉骞 - 博士 - 同济大学

切丛

图文简介

切丛是微分几何中最重要的概念之一,与之对偶的概念是余切丛。 很多重要的几何性质都和切丛及余切从有关。 它是研究微分几何的重要工具。