模态振型,通俗地讲是每阶模态振动的形态。但从数学上讲,模态振型是模态空间的“基”向量。
主要内容1. 模态中的单自由系统;
2. 模态振型的定义;
3. 模态振型的性质;
4. 模态振型缩放方法。
简介从计算模态的角度来讲,由特征值求解得到的特征值和特征向量,分别对应一阶模态频率和模态向量(当然也可能存在重根)。模态振型,也称为模态向量,模态振型向量,模态位移向量。模态振型是结构节点或测点的函数,如有限元模型节点数(注意不是模态中的节点)上万,甚至上百万,那么,模态振型就是这些节点的函数。而在试验模态中,由于测点数量远小于有限元模型的节点数,通常测点数从数个到数百个,因此,试验模态振型就是这些测点的位置函数。由于结构有无限多阶模态,因此,每一阶模态振型都不相同,也就是模态振型除了是结构位置的函数之外,还是模态阶数的函数。对计算模态而言,由于节点数成千上万,因此,对于描述每一阶模态振型来说,这些节点数量总是足够的。但对于试验模态而言,为了合理地描述模态振型,要求测量自由度必须足够,不然不能唯一地描述所关心的模态振型,还可能存在空间上的混叠。
模态振型,通俗地讲是每阶模态振动的形态。但从数学上讲,模态振型是模态空间的“基”向量。在线性代数中,基向量是描述、刻画向量空间的基本工具。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。在模态空间,这个基向量的个数就是模态的阶数。1
相关研究模态分析技术发展到今天已趋成熟,特别是线性模态理论(通常所说的模态分析均是指线性模态分析)方面的研究已日臻完善,但在工程应用方面还有不少工作可做。首先是如何提高模态分析的精度,扩大应用范围。增加模态分析的信息量是提高分析精度的关键,单靠增加传感器的测点数目很难实现,目前提出的一种激光扫描方法是大大增加测点数的有效办法,测点数目的增加随之而来的是增大数据采集与分析系统的容量及提高分析处理速度,在测试方法、数据采集与分析方面还有不少研究工作可做。对复杂结构空间模态的测量分析、频响函数的耦合、高频模态检测、抗噪声干扰等等方面的研究尚需进一步开展。模态分析当前的一个重要发展趋势是由线性向非线性问题方向发展。非线性模态的概念早在1960年就由Rosenberg提出,虽有不少学者对非线性模态理论进行了研究,但由于非线性问题本身的复杂性及当时工程实践中的非线性问题并示引起重视,非线性模态分析的发展受到限制。近年来在工程中的非线性问题日益突出,因此非线性模态分析亦日益受到人们的重视。最近已逐步形成了所谓非线性模态动力学。关于非线性模态的正交性、解耦性、稳定性、模态的分叉、渗透等问题是当前研究的重点。在非线性建模理论与参数辨识方面的研究工作亦是当今研究的热点。非线性系统物理参数的识别、载荷识别方面的研究亦已开始。展望未来,模态分析与试验技术仍将以新的速度,新的内容向前发展。2
与数学的关系模态振型是一个相对量,通常是一个列向量,二维以上的系统其模态振型不是一个数。一个数对应单模态,其数值无意义。某模态频率下的模态振型反映了在该模态频率下各自由度的相对位移的比值。如果系统的初始位移恰好等于模态频率下的模态振型(或与之成比例),则此时系统的自由响应中只会出现该模态频率。 模态振型是系统固有的振动形态,线性响应是振型线性叠加的结果,但振型之间是独立不耦合的。振型是个相对量,所以就有了多种振型归一划的方法。
本词条内容贡献者为:
刘军 - 副研究员 - 中国科学院工程热物理研究所
科普中国公众号
科普中国微博

帮助