近日,我国科研团队在嫦娥六号月背样品中首次发现大型撞击事件成因的微米级赤铁矿和磁赤铁矿晶体,揭示了全新的月球氧化反应机制,为环绕南极-艾特肯盆地磁异常的撞击成因提供了样品实证。该成果日前发表于国际学术期刊《科学进展》,将为后续月球科学研究提供重要依据,深化对月球演化历史的认知。

图库版权图片,转载使用可能引发版权纠纷
月球氧化之谜
氧化还原作用在行星形成演化过程中扮演着关键角色。与地球不同,月球内部的氧逸度和表面环境研究表明,月球几乎不存在强氧化条件,整体处于还原状态。
随着月球研究的深入,月球轨道遥感利用可见近红外光谱的研究推测,月球高纬度地区或广泛存在赤铁矿。嫦娥五号样品研究首次发现,撞击成因的亚微米级磁铁矿以及在撞击玻璃质中发现Fe3+的赋存等证据。这说明,月球表面在外部撞击主导的改造过程中,存在局部偏氧化环境。
但是,月球是否存在强氧化矿物如赤铁矿,缺乏直接的矿物学证据;月球表面是否广泛存在氧化作用,以及氧化特征矿物存在较大争议。
▲嫦娥六号月壤中铁氧化物形成过程示意图
图片来源:中国科学院地球化学研究所
研究提出,赤铁矿的形成可能与月球历史上的大型撞击事件密切相关。大型撞击形成瞬时高氧逸度气相环境的同时,铁元素在高氧逸度环境中被氧化,使陨硫铁发生了脱硫反应,经气相沉积过程形成微米级晶质赤铁矿颗粒。值得关注的是,该反应的中间产物为具有磁性的磁铁矿和磁赤铁矿,可能是南极-艾特肯盆地边缘磁异常的矿物载体。该研究首次利用样品证实了在超还原背景下月球表面存在赤铁矿等强氧化性物质,揭示了月球的氧化还原状态以及磁异常成因。
图片来源:央视新闻
2024年,嫦娥六号任务成功从南极-艾特肯盆地内部采回月球样品,为此次突破性发现创造了前提。
嫦娥六号着陆并采样的月球南极-艾特肯盆地,是太阳系岩石质天体上已知最大、最古老的撞击盆地,其形成时的撞击规模远超月球其他区域,为探索特殊地质过程提供了独特场景。
这一研究或为月表磁异常的载体和演化过程提供关键样品证据。
据悉,该研究成果由山东大学行星科学团队联合中国科学院地球化学研究所、云南大学科研人员共同完成,得到国家航天局月球样品的支持。
综合来源:新华网、光明日报、中国科学院地球化学研究所等
来源: 科普中国
内容资源由项目单位提供
科普中国公众号
科普中国微博

帮助
科普中国