煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。
煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会方方面面的发展的稳定,煤炭的供应安全问题也是我国能源安全中最重要的一环。
简介
煤炭是地球上蕴藏量最丰富,分布地域最广的化石燃料。构成煤炭有机质的元素主要有碳、氢、氧、氮和硫等,此外,还有极少量的磷、氟、氯和砷等元素。
碳、氢、氧是煤炭有机质的主体,占95%以上;煤化程度越深,碳的含量越高,氢和氧的含量越低。碳和氢是煤炭燃烧过程中产生热量的元素,氧是助燃元素。煤炭燃烧时,氮不产生热量,在高温下转变成氮氧化合物和氨,以游离状态析出。硫、磷、氟、氯和砷等是煤炭中的有害成分,其中以硫最为重要。煤炭燃烧时绝大部分的硫被氧化成二氧化硫(SO2),随烟气排放,污染大气,危害动、植物生长及人类健康,腐蚀金属设备;当含硫多的煤用于冶金炼焦时,还影响焦炭和钢铁的质量。所以,“硫分”含量是评价煤质的重要指标之一。
煤中的有机质在一定温度和条件下,受热分解后产生的可燃性气体,被称为“挥发分”,它是由各种碳氢化合物、氢气、一氧化碳等化合物组成的混合气体。挥发分也是主要的煤质指标,在确定煤炭的加工利用途径和工艺条件时,挥发分有重要的参考作用。煤化程度低的煤,挥发分较多。如果燃烧条件不适当,挥发分高的煤燃烧时易产生未燃尽的碳粒,俗称“黑烟”;并产生更多的一氧化碳、多环芳烃类、醛类等污染物,热效率降低。因此,要根据煤的挥发分选择适当的燃烧条件和设备。
煤中的无机物质含量很少,主要有水分和矿物质,它们的存在降低了煤的质量和利用价值。矿物质是煤炭的主要杂质,如硫化物、硫酸盐、碳酸盐等,其中大部分属于有害成分。
“水分”对煤炭的加工利用有很大影响。水分在燃烧时变成蒸汽要吸热,因而降低了煤的发热量。煤炭中的水分可分为外在水分和内在水分,一般以内在水分作为评定煤质的指标。煤化程度越低,煤的内部表面积越大,水分含量越高。
“灰分”是煤炭完全燃烧后剩下的固体残渣,是重要的煤质指标。灰分主要来自煤炭中不可燃烧的矿物质。矿物质燃烧灰化时要吸收热量,大量排渣要带走热量,因而灰分越高,煤炭燃烧的热效率越低;灰分越多,煤炭燃烧产生的灰渣越多,排放的飞灰也越多。一般,优质煤和洗精煤的灰分含量相对较低1。
在各大陆、大洋岛屿都有煤分布,但煤在全球的分布很不均衡,各个国家煤的储量也很不相同。中国、美国、俄罗斯、德国是煤炭储量丰富的国家,也是世界上主要产煤国,其中中国是世界上煤产量最高的国家。中国的煤炭资源在世界居于前列,仅次于美国、俄罗斯和澳大利亚。
历史
虽然煤炭的重要位置已被石油所替代,但在相当长的一段时间内,由于石油的日渐枯竭,导致它必然走向衰败,而煤炭因储量巨大,加之科学技术的飞速发展,煤炭气化等新技术日趋成熟,并得到广泛应用。
根据成煤的原始物质和条件不同,自然界的煤可分为三大类,即腐植煤、残植煤和腐泥煤。
中国是世界上最早利用煤的国家。辽宁省新乐古文化遗址中,就发现有煤制工艺品,河南巩义市也发现有西汉时用煤饼炼铁的遗址。
《山海经》中称煤为石涅,魏、晋时称煤为石墨或石炭。明代李时珍的《本草纲目》首次使用煤这一名称。
希腊和古罗马也是用煤较早的国家,希腊学者泰奥弗拉斯托斯在公元前约300年著有《石史》,其中记载有煤的性质和产地;古罗马大约在2000年前已开始用煤加热。
形成
煤炭是千百万年来植物的枝叶和根茎,在地面上堆积而成的一层极厚的黑色的腐植质,由于地壳的变动不断地埋入地下,长期与空气隔绝,并在高温高压下,经过一系列复杂的物理化学变化等因素,形成的黑色可燃沉积岩,这就是煤炭的形成过程。
一座煤矿的煤层厚薄与这地区的地壳下降速度及植物遗骸堆积的多少有关。地壳下降的速度快,植物遗骸堆积得厚,这座煤矿的煤层就厚,反之,地壳下降的速度缓慢,植物遗骸堆积的薄,这座煤矿的煤层就薄。又由于地壳的构造运动使原来水平的煤层发生褶皱和断裂,有一些煤层埋到地下更深的地方,有的又被排挤到地表,甚至露出地面,比较容易被人们发现。还有一些煤层相对比较薄,而且面积也不大,所以没有开采价值,有关煤炭的形成尚未找到更新的说法。
煤炭是这样形成的吗?有些论述是否应当进一步加以研究和探讨。一座大的煤矿,煤层很厚,煤质很优,但总的来说它的面积并不算很大。如果是千百万年植物的枝叶和根茎自然堆积而成的,它的面积应当是很大的。因为在远古时期地球上到处都是森林和草原,因此,地下也应当到处有储存煤炭的痕迹;煤层也不一定很厚,因为植物的枝叶、根茎腐烂变成腐殖质,又会被植物吸收,如此反复,最终被埋入地下时也不会那么集中,土层与煤层的界限也不会划分得那么清楚。
但是,无可否认的事实和依据,煤炭千真万确是植物的残骸经过一系统的演变形成的,这是颠扑不破的真理,只要仔细观察一下煤块,就可以看到有植物的叶和根茎的痕迹;如果把煤切成薄片放到显微镜下观察,就能发现非常清楚的植物组织和构造,而且有时在煤层里还保存着像树干一类的东西,有的煤层里还包裹着完整的昆虫化石。
在地表常温、常压下,由堆积在停滞水体中的植物遗体经泥炭化作用或腐泥化作用,转变成泥炭或腐泥;泥炭或腐泥被埋藏后,由于盆地基底下降而沉至地下深部,经成岩作用而转变成褐煤;当温度和压力逐渐增高,再经变质作用转变成烟煤至无烟煤。泥炭化作用是指高等植物遗体在沼泽中堆积经生物化学变化转变成泥炭的过程。腐泥化作用是指低等生物遗体在沼泽中经生物化学变化转变成腐泥的过程。腐泥是一种富含水和沥青质的淤泥状物质。冰川过程可能有助于成煤植物遗体汇集和保存2。
煤的形成年代
在整个地质年代中,全球范围内有三个大的成煤期:
- 古生代的石炭纪和二叠纪,成煤植物主要是孢子植物。主要煤种为烟煤和无烟煤。
- 中生代的侏罗纪和白垩纪,成煤植物主要是裸子植物。主要煤种为褐煤和烟煤。
- 新生代的第三纪,成煤植物主要是被子植物。主要煤种为褐煤,其次为泥炭,也有部分年轻烟煤。
分类
煤炭是世界上分布最广阔的化石能资源,主要分为烟煤和无烟煤、次烟煤和褐煤等四类。世界煤炭可采储量的60%集中在美国(25%)、苏联加盟共和国(23%)和中国(12%),此外,澳大利亚、印度、德国和南非4 个国家共占29%,上述7国或地区的煤炭产量占世界总产量的80%,已探明的煤炭储量在石油储量的63倍以上,世界上煤炭储量丰富的国家同时也是煤炭的主要生产国。
煤炭分类表
根据国家科委推荐的《中国煤炭分类方案》,我国煤炭分为十大类,一般将瘦煤、焦煤、肥煤、气煤、弱粘结、不粘结、长焰煤等统称为烟煤;贫煤称为半无烟煤;挥发分大于40%的称为褐煤。
无烟煤可用于制造煤气或直接用作燃料,烟煤用于炼焦、配煤、动力锅炉和气化工业;褐煤一般用于气化、液化工业、动力锅炉等。
煤炭分类表(以炼焦用煤为主)
|| ||
煤炭粒度分类
|| ||
国标煤炭分类
国标把煤分为三大类,即无烟煤、烟煤和褐煤,共29个小类。无烟煤分为3个小类,数码为01、02、03,数码中的“0”表示无烟煤,个位数表示煤化程度,数字小表示煤化程度高;烟煤分为12个煤炭类别,24个小类,数码中的十位数(1~4)表示煤化程度,数字小表示煤化程度高;个位数(1~6)表示粘结性,数字大表示粘结性强;褐煤分为2个小类,数码为51、52,数码中的“5”表示褐煤,个位数表示煤化程度,数字小表示煤化程度低。
在各类煤的数码编号中,十位数字代表挥发分的大小,如无烟煤的挥发分最小,十位数字为0,褐煤的挥发分最大,十位数字为5,烟煤的十位数字介于1~4之间,个位数字对烟煤类来说,是表征其粘结性或结焦性好坏,如个位数字越大,表征其粘结性越强,如个位数字为6的烟煤类,都是胶质层最大厚度Y值大于25mm的肥煤或气肥煤类,个位数为1的烟煤类,都是一些没有粘结性的煤,如贫煤、不粘煤和长烟煤。个位数字为2~5的烟煤,他们的粘结性随着数码的增大而增强1。
质量指标
(1)水分(M)
煤的水分分为两种,一是内在水分(Minh),是由植物变成煤时所含的水分;二是外水(Mf),是在开采、运输等过程中附在煤表面和裂隙中的水分.全水分是煤的外在水分和内在水分总和。一般来讲,煤的变质程度越大,内在水分越低。褐煤、长焰煤内在水分普通较高,贫煤、无烟煤内在水分较低。
水分的存在对煤的利用极其不利,它不仅浪费了大量的运输资源,而且当煤作为燃料时,煤中水分会成为蒸汽,在蒸发时消耗热量;另外,精煤的水分对炼焦也产生一定的影响。一般水分每增加2%,发热量降低100kcal/kg(大卡/千克);冶炼精煤中水分每增加1%,结焦时间延长5-10min。
(2)灰分(A)
煤在彻底燃烧后所剩下的残渣称为灰分,灰分分外在灰分和内在灰分。外在灰分是来自顶板和夹研中的岩石碎块,它与采煤方法的合理与否有很大关系。外在灰分通过分选大部分能去掉。内在灰分是成煤的原始植物本身所含的无机物,内在灰分越高,煤的可选性越差。灰是有害物质.动力煤中灰分增加,发热量降低、排渣量增加,煤容易结渣;一般灰分每增加2%,发热量降低100kcal/kg左右。冶炼精煤中灰分增加,高炉利用系数降低,焦炭强度下降,石灰石用量增加;灰分每增加1%,焦炭强度下降2%,高炉生产能九下降3%,石灰石用量增加4 %。
(3)挥发分(V)
煤在高温和隔绝空气的条件下加热时,所排出的气体和液体状态的产物称为挥发分。挥发分的主要成分为甲烷、氢及其他碳氢化合物等。它是鉴别煤炭类别和质量的重要指标之一。一般来讲,随着煤炭变质程度的增加,煤炭挥发分降低。褐煤、气煤挥发分较高,瘦煤、无烟煤挥发分较低。
(4)固定碳含量(FC)
固定碳含量是指除去水分、灰分和挥发分的残留物,它是确定煤炭用途的重要指标。从100减去煤的水分、灰分和挥发分后的差值即煤的固定碳含量。根据使用的计算挥发分的基准,可以计算出干基、干燥无灰基等不同基准的固定碳含量。
(5)发热量(Q)
发热量是指单位质量的煤完全的燃烧时所产生的热量,主要分为高位发热量和低位发热量。煤的高位发热量减去水的汽化热即是低位发热量。发热量国际单位为百万焦耳/千克(MJ/kg),常用单位大卡斤克,换算关系为:1MJ/kg=239.14kcal/kg?1J=0.239gcal?1cal=4.18J。如发热量550kcaL/g,550kcal/kg=550÷239. 14=23MJ/kg.为便于比较,我们在衡量煤炭时消耗时,要把实际使用的不同发热量的煤炭换算成标准煤,标准煤的发热量为29.27MJ/kg(7000kcal/kg)。国内贸易常用发热量标准为收到基低位发热量(Qnet,ar),它反映煤炭的应用效果,但外界因素影响较大,如水分等,因此Qnet,ar不能反映煤的真实品质。国际贸易通用发热量标准为空气干燥基高位发热量(Qnet,ar),它能较为准确的反映煤的真实品质,不受水分等外界因素影响。在同等水分、灰分等情况下,空气干燥基高位发热量比收到基低位发热量高1.25MJ/g(300kcal/kg)左右。
(6)胶质层最大厚度(Y)
烟煤在加热到一定温度后,所形成的胶质层最大厚度是烟煤胶质层指数测定中利用探针测出的胶质体上、F 层面差的最大值。它是煤炭分类的重要标准之一。动力煤胶质层厚度大,容易结焦;冶炼精煤对胶质层厚度有明确要求。
(7)粘结指数(G)
在规定条件下以烟煤在加热后粘结专用无烟煤的能力,它是煤炭分类的重要标准之一,是冶炼精煤的重要指标。粘结指数越高,结焦性越强。
应用范围
煤炭的用途十分广泛,可以根据其使用目的总结为三大主要用途:动力煤、炼焦煤、煤化工用煤,主要包括气化用煤,低温干馏用煤,加氢液化用煤等。
动力煤
(1)发电用煤:中国约1/3以上的煤用来发电,平均发电耗煤为标准煤370g/(kW·h)左右。电厂利用煤的热值,把热能转变为电能。
(2)蒸汽机车用煤:占动力用煤3%左右,蒸汽机车锅炉平均耗煤指标为100kg/(万吨·km)左右。
(3)建材用煤:约占动力用煤的13%以上,以水泥用煤量最大,其次为玻璃、砖、瓦等。
(4)一般工业锅炉用煤:除热电厂及大型供热锅炉外,一般企业及取暖用的工业锅炉型号繁多,数量大且分散,用煤量约占动力煤的26%。
(5)生活用煤:生活用煤的数量也较大,约占燃料用煤的23%。
(6)冶金用动力煤:冶金用动力煤主要为烧结和高炉喷吹用无烟煤,其用量不到动力用煤量的1%。
炼焦煤
中国虽然煤炭资源比较丰富,但炼焦煤资源还相对较少,炼焦煤储量仅占中国煤炭总储量27.65%。
炼焦煤类包括气煤(占13.75%),肥煤(占3.553%),主焦煤(占5.26%),瘦煤(占4.01%),其他为未分牌号的煤(占0.55%);非炼焦煤类包括无烟煤(占10.93%),贫煤(占5.55%),弱粘煤(占1.74%),不粘煤(占13.8%),长焰煤(占12.52%),褐煤(占12.76%),天然焦(占0.3%),未分牌号的煤(占13.80%)和牌号不清的煤(占1.06%)。
炼焦煤的主要用途是炼焦炭,焦炭由焦煤或混合煤高温冶炼而成,一般1.3吨左右的焦煤才能炼一吨焦炭。焦炭多用于炼钢,是钢铁等行业的主要生产原料,被喻为钢铁工业的“基本食粮”。
中国是焦炭生产大国,也是世界焦炭市场的主要出口国。2003年,全球焦炭产量是3.9亿吨,中国焦炭产量达到1.78亿吨,约占全球总产量的46%。在出口方面,2003年中国共出口焦煤1475万吨,其中出口欧盟458万吨,约占1/3。2004年,中国共出口焦炭1472万吨,相当于全球焦炭贸易总量的56%,国际焦炭市场仍供不应求。2008年中国焦炭产量总计约32700万吨,2009年1月至9月焦炭产量25276.87万吨1。
中国状况
资源概述
中国煤炭资源丰富,除上海以外其他各省区均有分布,但分布极不均衡。在中国北方的大兴安岭-太行山、贺兰山之间的地区,地理范围包括煤炭资源量大于1000亿吨以上的内蒙古、山西、陕西、宁夏、甘肃、河南6省区的全部或大部,是中国煤炭资源集中分布的地区,其资源量占全国煤炭资源量的50%左右,占中国北方地区煤炭资源量的55%以上。在中国南方,煤炭资源量主要集中于贵州、云南、四川三省,这三省煤炭资源量之和为3525.74亿吨,占中国南方煤炭资源量的91.47%;探明保有资源量也占中国南方探明保有资源量的90%以上。
2007年度中国能源矿产新增探明资源储量有较大增加,17种主要矿产新增大型矿产地62处,其中煤炭新探明41处大型矿产地,其中资源储量超过10亿吨的特大型矿产地有14处,净增查明资源储量448亿吨。中国已经查证的煤炭储量达到7241.16亿吨,其中生产和在建已占用储量为1868.22亿吨,尚未利用储量达4538.96亿吨。
2006年1-12月中国煤炭开采和洗选行业实现累计工业总产值698,829,619,000元,比上年同期增长了23.45%;实现累计产品销售收入709,234,867,000元,比上年同期增长了23.72%,实现累计利润总额67,726,662,000元,比上年同期增长了25.34%。
2007年1-12月中国煤炭开采和洗选行业实现累计工业总产值916,447,509,000元,比上年同期增长了28.06%。2008年1-10月中国煤炭开采和洗选行业实现累计工业总产值1,155,383,579,000元,比上年同期增长了57.81%。
“十一五”期间是煤炭工业结构调整、产业转型的最佳时期。煤炭是中国的基础能源,在一次能源构成中占70%左右。“十一五”规划建议中进一步确立了“煤为基础、多元发展”的基本方略,为中国煤炭工业的兴旺发展奠定了基础。“十一五”期间需要新建煤矿规模3亿吨左右,其中投产2亿吨,转结“十二五”1亿吨。中国煤炭工业将继续保持旺盛的发展趋势,今后一个较长时期内,中国煤炭工业的发展前景都将非常广阔。
海关总署公布的数据显示,2014年8月份,中国煤炭进口量降至1886万吨,环比下降18.11%,同比下降27.3%,已经连降六个月,并且降幅进一步扩大。
2015年12月1日,陕西省政府网站消息,为破解煤炭市场需求不足、价格走低等难题,榆林市积极创新区域合作机制,打造终端销售市场,畅通运输网络。2015年1-10月榆林市累计销售煤炭达3.1亿吨,其中,累计销往河北省煤炭1.1亿吨、山西4000万吨、陕西关中地区2800万吨、内蒙古2400万吨、河南1800万吨、山东1700万吨、宁夏1000万吨、甘肃800万吨、北京700万吨、湖北450万吨,占榆林市煤炭销售总量的86%。
基本情况
中国幅员辽阔,物产丰富,中华民族赖以生息繁衍、发展壮大、立足世界民族之林的要物质基础。在已发现的142种矿物中,煤炭占有特别重要的位量,资源丰富,分布广泛,煤田面积约55万平方公里,居世界产煤国家之前列。
中国聚煤期的地质时代由老到新主要是:早古生代的早寒武世:晚古生代的早石炭世、晚石炭世—早二叠世、晚二叠世;中生代的晚三叠世,早、中侏罗世、晚株罗世—早白垩世和新生代的第三纪。其中以晚石炭世——早二叠世,晚二叠世,早、中侏罗世和晚侏罗世—早白垩世四个聚煤期的聚煤作用最强。中国含煤地层遍布全国,包括元古界、早古牛界、晚古生界、中生界和新生界,各省(区)都有大小小一、经济价值不等的煤田。
中国聚煤期及含煤地层的分布在:华北、华南、西北、西南(滇、藏)、东北和台湾六个聚煤区而各有不向。
国务院在2014年发布的《能源发展战略行动计划(2014-2020年)》中确定,将重点建设晋北、晋中、晋东、神东、陕北、黄陇、宁东、鲁西、两淮、云贵、冀中、河南、内蒙古东部、新疆等14个亿吨级大型煤炭基地。数据显示,2013年14个大型煤炭基地产量33.6亿吨,占全国总产量的91%。
产地分布
山西省:大同、阳泉、太原、吕梁、长治、晋城、忻州、朔州、临汾
黑龙江省:双鸭山、鸡西、鹤岗、七台河、密山
山东省:济宁、枣庄、泰安、龙口、菏泽
内蒙古:鄂尔多斯、乌海、呼伦贝尔、锡林郭勒、阿拉善盟
陕西省:榆林、铜川、神木
辽宁省:阜新、抚顺、调兵山
宁夏回族自治区:宁东
江苏省:徐州
四川省:攀枝花
贵州省:六盘水
安徽省:淮北、淮南、蒙城、涡阳
河南省:平顶山、郑州、焦作、许昌、三门峡、永城
河北省:开滦、峰峰、井陉、邯郸、张家口
新疆维吾尔自治区:准东、吐哈、库拜、伊犁
甘肃省:窑街、靖远、华亭
云南省:曲靖、昭通、文山、保山、开远、丽江
环境问题及措施
开采中的环境问题
(1)地表塌陷
煤炭开采多数以地下矿井开采为主,这种开采方式必然会造成地表塌陷,而且地表塌陷的面积要比煤炭开采面积大1倍左右,长时间的地表塌陷就会在平原地区出现积水受淹的现象,部分地区也会出现土地资源盐渍化的现象,这对于土地资源的破坏是极其严重的,而在山地地区严重的地表塌陷还会引起山体滑坡和泥石流,对土地资源和生态环境产生了十分不利的影响,极大的破坏了生态平衡。
(2)水资源污染
在煤炭开采的过程中会应用到很多的水资源,这些水资源一般在利用完之后不经处理就直接排放,而煤炭开采的废弃水资源对土地和地表植物具有很大的杀伤力,而且还造成了水资源浪费的现象。例如:在煤矿资源附近一般有大量的农田,如果煤炭开发中废弃的水源没有处理渗入到农田中,就会造成农作物的减产或者死亡;如果渗入到地下水中,就会对饮用水造成污染,直接威胁人类的身体健康。因此,煤炭开发中的废水排放对环境和人类造成了十分严重的灾难,必须要得到高度的重视。
(3)大气污染
在煤炭资源开发过程中,开采露天煤矿、矿场矸石自燃、煤矿层瓦斯抽排等作业活动都会产生或释放大量有害气体、粉尘,废气主要包括CO、CO2、SO2、CH4等。其中,CO、CO2、CH4会造成温室效应;SO2不仅污染空气,还会影响矿区植物生长发育,甚至会导致酸雨产生。酸雨不仅能大面积破坏森林、农作物,还会导致水质酸化而使大部分水生物死亡,更能腐蚀一些建筑物及其他室外材料。
(4)固体废弃物污染
煤炭开发过程中会产生一种叫煤矸石的固体废弃物,这种物质是煤炭开发中最重要的固体废物,由于其没有使用价值所以被排放出来之后也是常年的堆积在一起,这种情况就会占用矿区周边大量的土地,同时其在风化之后还会产生自燃的现象,自燃后排放出的有毒气体对矿区附近的自然环境造成了十分严重的破坏,并且在遇到暴雨后堆积成山的煤矸。5
(5)地质损坏
煤炭资源不合理的开发与利用会给地质环境带来严重影响。不合理开采煤矿对地质造成的危害主要有三方面,即:破坏资源、污染环境、引发矿山地质灾害。煤矿滥开采对资源破坏主要表现为地表水存储循环状态与地下水存储受到破坏,致使煤矿区域附近地表水流失、地下水位下降,不仅煤炭资源出现严重损失,土地资源也受到严重破坏;环境污染方面问题主要表现为矸石与煤层等有害物的迁移和扩散,煤矿区附近的水质、空气及土壤等环境指标严重超标:常见的矿山地质灾害有两种形式,即:井下地质灾害与地表地质灾害。煤矿区域的许多山体崩塌与滑坡都是因岩石发生移动引起的,泥石流灾害在煤矿区域附近十分常见。煤炭资源不合理的开发与利用引起的各种地质问题,不仅对煤矿区员工正常生产劳动和附近居民生活具有很大影响,而且也对煤碳企业的长期稳定发展具有制约性作用。最重要的是不合理的煤炭资源开发与生产工作引起的地质环境破坏是不可逆转的。6
具体措施
1.补充并健全煤炭资源开发与环境保护相关的法律法规
在环境问题爆发的初期阶段,国家颁布及实施了《中华人民共和国煤炭法》、《中华人民共和国环境保护法》等相应的法律法规,用来约束资源开发等行为,加大对环境的保护力度,使自然资源得到更加合理的配置、并取得了明显的效果。但通过对法律法规的实践发现,这些法规虽然在一定程度上保障了煤炭开发工作,但仍然有很多地方需要改进,国家宏观调控及自然资源整合等政策在某些地区难以展开,进一步补充并健全国家相关政策及法律法规显得更加重要了。为了能使煤炭开发过程中造成的资源浪费及环境污染问题得到一定的遏制,将生态损失降至最低,应坚持预防为主、治理为辅的理念,制定用来制约矿区生态环境破坏的法律规定并严格实施,在前期,煤炭开发项目必须经过严格的审批流程,在后期,必须对其实施环境影响评价。
2.整合监管执法力量
煤炭资源开发是一个十分系统的大型工程,如果让相关部门各自分开执法,则不利于高效开展煤炭资源开发生态补偿工作,因此,要想协调统筹一系列生态补偿行动,就应筹建专职矿区生态管理部门,全权负责矿区生态补偿的相关收费、监督工作。
3.合理征收管理税费
煤炭资源生态补偿的资金管理与其实施效果密切相关。补偿资金运用必须做到公开透明、专款专用。煤炭资源开采企业应依法依规缴纳生态补偿费,为了督促企业履行生态补偿义务,可提前向企业征收生态补偿备用金。使用该项资金时,应遵守各项法律法规。除此之外,在招引治污企业来恢复生态时,财政转移支付、恢复治理基金等国家补偿资金的使用要做到公开透明,并尽量提高资金利用效率。
4.地下水环境保护措施研究
做好矿区水文地质与工程地质勘察和预测、预报工作,规范采掘,通过限高开采、分层开采等方法降低导水裂隙带的发育高度,保护含水层结构;生活污水经治理后用于农田灌溉,施工废水经处理后全部回用不外排。矿井排水主要受煤尘污染,悬浮物浓度较高,应采用高效混凝沉淀处理工艺处理;生活污水主要污染物为COD、BOD、SS,采用接触氧化工艺一体化处理设备处理,防止因地表水污染后下渗造成地下水污染;沉陷表现形式主要是地表裂缝、局部滑坡或崩塌,主要由于水位下降引发,应采用强化底板条件、减少底板突水或对特殊构造留设保护煤柱等方法有效控制水位下降,减缓对土地的沉陷影响;做好矿区水循环系统和巷道水平衡及安全支护,避免因地表水扩充或地下水涌水等造成对地下水环境与地质环境严重影响。
5.矿山地质环境保护与恢复治理措施
(1)地面塌陷:矿区内的地面塌陷主要为潜在的采空区地面塌陷,它的保护与治理恢复主要是保持井巷的顶板有一定的厚度,以保证它的安全,不至于发生地面塌陷。主要防护治理措施如下:采空区地面塌陷移动盆地外围设置截排水沟,防止地表流入移动盆地、渗入采空区;在矿山开采过程中,利用废矿石进行回填;顶板不稳固的可采用金属锚杆加金属网进行辅助支护。在开采时要加强顶板管理,以确保采场的稳固与安全;对新增采空区封闭处理,对个别分散的采空区采用混凝土砌筑岩石封闭墙隔离采空区。矿山闭坑后封闭采空区。
来源: 百度百科
内容资源由项目单位提供