目前全球葡萄果实病害危害不容小觑,但在防治方面有更加紧迫的事需要处理,杀菌剂的开发为真菌病害防控提供了高效低毒的化合物,但病原菌的抗性突变和环境问题日益凸显(Hahn, 2014),得到人们重视。欧盟等地区已经开始限制杀菌剂的使用(Lamichhane, 2017),消费者也逐渐趋向于不使用化学农药的食品,这也极大的推动了生物防治的发展。这期我们来谈谈关于葡萄果实病害的生物防治。
葡萄炭疽病 近年许多生防制剂被用于葡萄炭疽病的防治。酵母 Saccharomyces cerevisiae GA8菌株对葡萄炭疽病病原物胶孢炭疽菌和尖孢炭疽菌均有良好的抑制效果,田间防效也甚佳(Liu et al., 2018)。芽胞杆菌在葡萄炭疽病的生物防治中也占据突出地位(Sawant et al., 2016; 臧超群 等, 2011)。如蜡样芽胞杆菌 Bacillus cereus NRKT 菌株(Aoki et al., 2017)能显著降低田间葡萄炭疽病发病率,枯草芽胞杆菌与吡唑醚菌酯及其混配对葡萄炭疽病、白腐病有良好的室内和田间防效(Mu, 2015)。Pedrotti, C 等发现,两种桉树精油对葡萄炭疽病菌、灰霉病菌有平板抑菌活性(Pedrotti et al., 2019)。决明子油、圣罗勒油、薄荷油,Baccharis trimera 和 Baccharis dracunculifolia的精油能预防和治疗葡萄采后由炭疽菌和灰葡萄孢引起的腐烂,有很强的应用潜能(Quyen et al., 2019)。此外,硅酸钠、壳聚糖等对葡萄炭疽菌也有良好的防治效果(侯珲 等, 2016)。
葡萄灰霉病 由于葡萄灰霉病在采前和采后广泛发生,而灰霉病菌的抗药性风险很高,近年葡萄灰霉病的生物防治研究引起极大关注,多种真菌、细菌、植物提取物在灰霉病防治中得到深入研究和商业化应用。多种酵母(如 Saccharomyces cerevisiae, Pichia sp., Candida spp., Metschnikowia spp.)、木霉、出芽短梗霉菌等真菌对葡萄灰霉病具有良好的生防潜力(Kasfi et al., 2018; Wang et al., 2018; 康萍芝 等, 2007)。Qin 等将酵母 Hanseniaspora uvarum 与水杨酸、碳酸氢钠结合使用于采后葡萄的灰霉病防治,取得良好效果(Qin et al., 2015)。Li 等从葡萄叶片中分离得到的 Albifimbria verrucaria SYE-1 菌株能有效抑制灰霉病菌的菌丝生长和分生孢子萌发,对‘红地球’葡萄叶片灰霉病有良好离体防效(Li et al., 2020)。Trichoderma koningii Td85 菌株和 Saccharomyces cerevisiae L30b 菌株对葡萄灰霉病有良好田间防效。由木霉菌研制出的商品制剂 Trichodex 已经在欧洲和北美等 20 多个国家注册、推广,细基格孢 Ulocladium oudemansii、壳聚糖等在国外得到了商业化应用,在中国农药信息网上也有木霉对葡萄灰霉病防治的登记信息(Calvo et al., 2013)。细菌如枯草芽胞杆菌Bacillus subtilis, 解淀粉芽胞杆菌B. amyloliquefaciens, 荧光假单胞菌 Pseudomonas fluorescens, Starmerella bacillaris, S. abacillaris 等均有研究 (Bruisson et al., 2019; Jiang et al., 2019)。Boubakri等发现,枯草芽胞杆菌 Bacillus subtilis (Bs1 和 Bs2 菌株)及其无菌滤液对葡萄灰霉病菌有良好的体外抑菌活性(Boubakri et al., 2015)。在法国六个葡萄园中进行的试验结果显示,Bacillus ginsengihumi (S38)可将葡萄灰霉病发病严重度降低 35-60%,另外几种已商业化生产的菌株 及其防效分别为 C. sake(45%), B. subtilis (54%), B. amyloliquefaciens (58%) (Calvo et al., 2019)。
另外,一些植物提取物、精油、盐、化合物等也在葡萄灰霉病防治上有广泛应用(Calvo, 2014),研究表明生防制剂或植物提取剂与杀真菌剂结合使用可有效预防灰霉病,并降低杀真菌剂残留的风险(Rotolo et al., 2018)。
葡萄白腐病等 白腐病的生物防治研究报道较少。崔贵青筛选出具有白腐病菌拮抗活性的放线菌菌株 G4,并对菌株发酵条件进行优化(崔贵青, 2012),另有研究表明芽胞杆菌 GSBM05 对葡萄白腐病菌有抑菌活性(尹向田 等, 2018),多粘类芽胞杆菌 HT16 发酵液能有效降低由 Coniella diplodiella 引起的白腐病发病率(Han et al., 2015)。
酸腐病的防治需将抑菌和杀虫结合。如酵母 Candida sake CPA-1 除了对葡萄灰霉病有效外,还能显著降低田间酸腐病发病率(Carbó et al., 2019)。果蝇的生物防治措施主要有释放天敌昆虫、使用精油趋避等。葡萄内生真菌和细菌被用于筛选有效的曲霉、灰葡萄孢抑制菌株(Diguta et al., 2016)。酵母 Lanchancea thermotolerans 在田间试验中对酿酒葡萄上的黑曲霉生长和曲霉毒素 A(OTA)的产生有抑制作用(Ponsone, 2016),木霉 Trichoderma viride JAU60菌株对黑曲霉引起的花生腐烂有抑制效果(Gajera et al., 2016),紫葳科植物提取物对引起葡萄果实腐烂的黑曲霉 Aspergillus niger 和 A. carbonarius 有抗菌活性(Gisselle, 2019)。
葡萄穗轴褐枯病的生物防治研究也逐渐得到重视,主要有植物提取物:薄荷精油、百里香精油、大蒜提取物等;抗生素:多抗霉素等;微生物:酵母、丁香假单胞菌、防御假单胞菌、枯草芽胞杆菌、解淀粉芽胞杆菌等。(集贤 等, 2014)。以壳聚糖为包衣剂的酵母Metschnikowia pulcherrima RCM2 菌株对链格孢在采后引起的腐烂有良好抑制效果(Stocco et al., 2019)
参考文献崔贵青 (2012). 葡萄白腐病菌拮抗放线菌的筛选鉴定及发酵条件研究 (吉林农业大学).
侯珲, 周增强, 王丽, 王生荣 (2016). 硅酸钠对葡萄炭疽病的防治效果. 植物保护学报 43, 836-841.
集贤, 张平, 李志文 (2014). 纳他霉素对葡萄采后交链孢菌的抑制作用. 食品工业科技 35, 308-311.
康萍芝, 张丽荣, 沈瑞清 (2007). 11 种木霉菌对葡萄灰霉病菌的拮抗作用. 中国农学通报, 392-395.
尹向田, 苏玲, 吴新颖, 杨立英, 张久慧 (2018). 芽孢杆菌 GSBM05 对葡萄白腐病菌的抑菌活性及
其鉴定. 中国农学通报 34, 134-141.
臧超群, 赵奎华, 刘长远, 梁春浩, 关天舒, 王辉, 王璐 (2011). 葡萄炭疽病有益微生物筛选及控病
效果研究. 中国农学通报 27, 387-390.
Aoki, T., Aoki, Y., Ishiai, S., Otoguro, M., and Suzuki, S. (2017). Impact of Bacillus cereus NRKT on Grape Ripe Rot Disease Through Resveratrol Synthesis in Berry Skin. Pest Manage Sci 73, 174-180.
Boubakri, H., Hadj-Brahim, A., Schmitt, C., Soustre-Gacougnolle, I., and Mliki, A. (2015). Biocontrol Potential of Chenodeoxycholic Acid (CDCA) and Endophytic Bacillus subtilis Strains Against the Most Destructive Grapevine Pathogens. New Zeal J Crop Hort 43, 261-274.
Bicarbonate. Postharvest Biol Tec 100, 160-167.
Li, Z., Chang, P., Gao, L., and Wang, X. (2020). The Endophytic Fungus Albifimbria verrucaria from Wild Grape as an Antagonist of Botrytis cinerea and Other Grape Pathogens. Phytopathology, O9190347R.
Bruisson, S., Zufferey, M., L Haridon, F., Trutmann, E., Anand, A., Dutartre, A., De Vrieze, M., and Weisskopf, L. (2019). Endophytes and Epiphytes From the Grapevine Leaf Microbiome as Potential Biocontrol Agents Against Phytopathogens. Front Microbiol 10.
Calvo-Garrido, C., Elmer, P.A.G., Viñas, I., Usall, J., Bartra, E., and Teixidó, N. (2013). Biological Control of Botrytis Bunch Rot in Organic Wine Grapes with the Yeast Antagonist Candida sake CPA-1. Plant Pathol 62, 510-519.
Carbó, A., Torres, R., Usall, J., Marín, A., Chiralt, A., and Teixidó, N. (2019). Novel Film-Forming Formulations of the Biocontrol Agent Candida sake CPA-1: Biocontrol Efficacy and Performance at Field Conditions in Organic Wine Grapes. Pest Manage Sci 5, 959-968.
Diguta, C.F., Matei, F., and Cornea, C. P. (2016). Biocontrol Perspectives of Aspergillus carbonarius, Botrytis cinerea and Pencillium expansum on Grapes Using Epiphytic Bacteria iIsolated from Romanian Vineyards. Rom Biotech Lett 21, 11126-11132.
Gisselle R. Apud, P.A.A.M. (2019). Antifungal Activity of Bignoniaceae Plants on. Nat Prod Res.
Gajera, H.P., Katakpara, Z.A., Patel, S.V., and Golakiya, B.A. (2016). Antioxidant Defense Response Induced by Trichoderma viride Against Aspergillus niger Van Tieghem Causing Collar Rot in Groundnut (Arachis hypogaea L.). Microb Pathog 91, 26-34.
Hahn, M. (2014). The Rising Threat of Fungicide Resistance in Plant Pathogenic Fungi Botrytis as a Case
Study. Journal of Chemical Biology 7, 133-141.
Han, J., Chen, D., Huang, J., Li, X., Zhou, W., Gao, W., and Jia, Y. (2015). Antifungal Activity and
Biocontrol Potential of Paenibacillus polymyxa HT16 Against White Rot Pathogen (Coniella diplodiella Speq.) in Table Grapes. Biocontrol Sci Techn 25, 1120.
Jiang, M.Y., Wang, Z.R., Chen, K.W., Kan, J.Q., Wang, K.T., Zalán, Z., Hegyi, F., Takács, K., and Du,
M.Y. (2019). Inhibition of Postharvest Gray Mould Decay and Induction of Disease Resistance by
Pseudomonas Fluorescens in Grapes. Acta Aliment Hung 48, 288-296.
Kasfi, K., Taheri, P., Jafarpour, B., and Tarighi, S. (2018). Identification of Epiphytic Yeasts and Bacteria
with Potential for Biocontrol of Grey Mold Disease on Table Grapes Caused by Botrytis cinerea. Span J Agric Res 16, e1002.
Lamichhane, J.R. (2017). Pesticide Use and Risk Reduction in European Farming Systems with IPM_ An
Introduction to the Special Issue. Crop Protect 97, 1-6.
Liu, Z., Du, S., Ren, Y., and Liu, Y. (2018). Biocontrol Ability of Killer Yeasts (Saccharomyces Cerevisiae)
Isolated from Wine Against Colletotrichum Gloeosporioides on Grape. J Basic Microb 58, 60-67.
M. L. Ponsone, M.C.N.M. (2016). Evaluation of the Effectiveness of Potential Biocontrol Yeasts Against
Black Sur Rot and Ochratoxin A Occurring Under Commercial Greenhouse Grape Production Conditions. Biol Control 103, 78-85.
Muxiang JI, N.M.G.L. (2015). On the Bacteriostatic Activity of Bacillus subtilis and Pyraclostrobin as
Well as Their Mixtures to Grape Anthracnose and the Field Disease Control Efficiency. Agricultural Science & Technology 16, 2736-2741.
Pedrotti, C., Marcon, Â.R., Delamare, A.P.L., Echeverrigaray, S., Silva Ribeiro, R.T., and Schwambach, J. (2019). Alternative Control of Grape Rots by Essential Oils of Two Eucalyptus Species. J Sci Food Agr 99,
6552-6561.
Qin, X., Xiao, H., Xue, C., Yu, Z., Yang, R., Cai, Z., and Si, L. (2015). Biocontrol of Gray Mold in Grapes with the Yeast Hanseniaspora uvarum Alone and in Combination with Salicylic Acid or Sodium .
Quyen, N.T.T., Thao, L.T.T., Thao, T.T.T., Quyen, C.T.N., Kim Thuy, D.T., and Dong, L.M. (2019). Extending the Shelf life of Grape by Combining the Ca-alginate Film and Essential Oil. Vietnam Journal of Science and Technology 57, 657.
来源: 中国植物病理学会