定义
周期
在非常小的振幅(角度)下,单摆做简谐运动的周期跟摆长的平方根成正比,跟重力加速度的平方根成反比,跟振幅、摆球的质量无关。
公式
单摆是一种理想的物理模型,它由理想化的摆球和摆线组成.摆线由质量不计、不可伸缩的细线提供;摆球密度较大,而且球的半径比摆线的长度小得多,这样才可以将摆球看做质点,由摆线和摆球构成单摆.在满足偏角小于10°的条件下,单摆的周期为
从公式中可看出,单摆周期与振幅和摆球质量无关。从受力角度分析,单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大,回复力越大,加速度(gsinθ )越大,在相等时间内走过的弧长也越大,所以周期与振幅、质量无关,只与摆长l和重力加速度g有关。在有些振动系统中l不一定是绳长,g也不一定为9.8m/,因此出现了等效摆长和等效重力加速度的问题。
物理上有些问题与单摆类似,经过一些等效可以套用单摆的周期公式,这类问题称为“等效单摆”.等效单摆在生活中比较常见.除等效单摆外,单摆模型在其他问题中也有应用.
说明
单摆是质点振动系统的一种,是最简单的摆。绕一个悬点来回摆动的物体,都称为摆,但其周期一般和物体的形状、大小及密度的分布有关。但若把尺寸很小的质块悬于一端固定的长度为l且不能伸长的细绳上,把质块拉离平衡位置,使细绳和过悬点铅垂线所 成角度小于10°,放手后质块往复振动,可视为质点的振动,其周期T只和长度l和当地的重力加速度g有关,即T和质块的质量 、形状和振幅的大小都无关系,其运动状态可用简谐振动公式表示,称为单摆。如果振动的角度大于10°,则振动的周期将随振幅的增加而变大,就不成为单摆了。如摆球的尺寸相当大,绳的质量不能忽略,就成为复摆,周期就和摆球的尺寸有关了。
应用
- 重力加速度测量:通过测量单摆的摆长和周期,可以计算出当地的重力加速度,这对于地球物理学、地质勘探等领域有重要意义。
- 时间与频率测量:利用单摆的等时性,可以制作各种计时器和钟表,例如机械摆钟、电子钟表等,用于测量时间和频率。当单摆周期T=2s时,由公式推导,摆长大约为1m,这种情况的单摆叫做秒摆。
注意:在当前高中阶段,一般研究摆角小于10°的情况(即近似看做简谐运动),且高中阶段教材中仅涉及在实验中推测公式,不涉及单摆周期公式的推导(因为需要涉及到高等数学)。用单摆测重力加速度是单摆周期公式 的一个重要应用。1
动力学方程
由牛顿力学,单摆的运动可作如下描述。
首先可以得到,重力对单摆的力矩为
其中m为质量,g是重力加速度,l是摆长,θ是单摆与竖直方向的夹角,注意,θ是矢量,这里取它在正方向上的投影。
希望得到摆角θ的关于时间的函数,来描述单摆运动。由角动量定理知道,
其中 是单摆的转动惯量, 是角加速度。
于是化简得到
(1)
小角近似周期
(1)式是一个非线性微分方程。所以严格地说上面的(1)式描述的单摆的运动并不是简谐运动。
不过,在θ比较小时,近似地有sin θ ≈ θ。(即 。)因而此时(1)式就变为 ,这是一个二阶常系数线性齐次微分方程,其通解为 ,式中A. 为任意常数,由初值条件给定。而
于是单摆的非线性的运动被线性地近似为简谐运动
一般在高考之类的考试中,认为10°以下可以这样近似。
事实上5°≈0.087266 rad,sin 5°≈0.087155,二者相差只有千分之一点几,是十分接近的。在低精度的实验中,这种系统误差可以忽略不计(因为实验操作中的偶然误差就比它大)。但如果换成25°,误差高达百分之三,就不宜再看成是简谐振动了。
由于正弦函数的性质,这个近似是角度越小,越精确,角度越大越不精确。如果角度很大(比如60度处,误差高达17%),就完全不能说它是简谐振动了。
伽利略第一个发现摆的振动的等时性,并用实验求得单摆的周期随长度的二次方根而变动。惠更斯制成了第一个摆钟。单摆不仅是准确测定时间的仪器,也可用来测量重力加速度的变化。惠更斯的同时代人天文学家J.里希尔曾将摆钟从巴黎带到南美洲法属圭亚那,发现每天慢2.5min,经过校准,回巴黎时又快2.5min。惠更斯就断定这是由于地球自转引起的重力减弱。I. 牛顿则用单摆证明物体的重量总是和质量成正比的。直到20世纪中叶,摆依然是重力测量的主要仪器。
真实周期推导
上面提到是角度比较小的时候单摆的近似公式,但科学是严谨的,在此补充在任意角度下单摆的周期公式。
在此之前先提出两个概念(这里用Mathematica的定义):
第一类不完全椭圆积分:
第一类完全椭圆积分:
下面用微分方程进行讨论,可以尝试用动能定理进行计算,可以更简洁地得到其特解。
设摆长为l,摆线与竖直方向的夹角为θ,那么单摆的运动公式为:
令 ,于是有 上式改写成:
这是一个可分离变量的微分方程!分离变量:
其通解为
给定初始条件 (0≤α≤π), ,则其特解为:
所以考虑t(t是四分之一周期):
设 ,则
又考虑到
便可以化简得到
按照前面的定义,便有
此处的α就是常说的摆角。
相关差别
直观差别图如右:
利用电脑软件,列出近似公式与真实公式的差别。
下面数据皆是相对误差:相对误差=(真实值-近似值)/真实值
每一行,摆角相差1度,自0取到180度。
0
0.0019038558531896002%
0.0076153871712633745%
0.01713448526148856%
0.030460969075184717%
0.047594585366650885%
0.06853500891589595%
0.09328184281540482%
0.12183461882124084%
0.1541927977688524%
0.1903557700540208%
0.23032285617945628%
0.27409330736761933%
0.32166630624041737%
0.37304096756649924%
0.42821633907694606%
0.48719140235023334%
0.549965073767417%
0.6165362055385787%
0.686903586801647%
0.7610659447947971%
0.839021946103721%
0.92077019798515%
1.006309249768103%
1.0956375943344412%
1.188753669680396%
1.2856558605608566%
1.386342500218304%
1.490811872198394%
1.599062212254311%
1.7110917103421366%
1.8268985127096076%
1.9464807240807704%
2.0698364099391786%
2.1969635989124314%
2.3278602852610035%
2.4625244314744745%
2.600953970978439%
2.7431468109555626%
2.8891008352844154%
3.038813907599942%
3.192283874479603%
3.3495085687594606%
3.5104858129847005%
3.675213422999331%
3.843689211680047%
4.0159109928195225%
4.191876585164665%
4.371583816615697%
4.555030528592199%
4.742214580572629%
4.933133854814164%
5.127786261260084%
5.326169742642323%
5.5282822797872475%
5.734121897133129%
5.9436866684683%
6.156974722899461%
6.3739842510601274%
6.594713511569824%
6.819160837755173%
7.04732464464473%
7.279203436250061%
7.514795813146305%
7.754100480366246%
7.99711625562274%
8.243842077875229%
8.494277016257039%
8.748420279381131%
9.006271225043092%
9.2678293703413%
9.533094402235417%
9.802066188565687%
10.074744789556986%
10.351130469833013%
10.63122371096772%
10.915025224602775%
11.202535966161768%
11.493757149193899%
11.788690260382037%
12.087337075252421%
12.389699674625776%
12.695780461852351%
13.00558218087636%
13.319107935178396%
13.636361207647948%
13.957345881441757%
14.282066261887804%
14.610527099499105%
14.942733614166162%
15.278691520602091%
15.61840705511994%
15.961887003827869%
16.309138732334322%
16.660170217062607%
17.014990078281997%
17.373607614971124%
17.7360328416386%
18.10227652723615%
18.472350236310504%
18.846266372552723%
19.224038224916786%
19.605680016494205%
19.991206956347447%
20.380635294522822%
20.773982380483087%
21.171266725221678%
21.57250806734433%
21.977727443430435%
22.386947263015642%
22.800191388569722%
23.21748522087999%
23.63885579029045%
24.06433185429185%
24.493944002007527%
24.92772476617582%
25.365708743292277%
25.807932722644754%
26.254435825053335%
26.70525965221522%
27.160448447654655%
27.62004927039044%
28.08411218256101%
28.552690452391587%
29.025840774051932%
29.50362350614023%
29.986102930741776%
30.47334753525516%
30.965430319458193%
31.462429130607322%
31.96442702973461%
32.47151269273426%
32.98378085032637%
33.50133277156177%
34.0242767962028%
34.552728922099824%
35.086813454603366%
35.62666372613477%
36.17242289531702%
36.72424483658309%
37.282295132982576%
37.84675218706157%
38.41780846727546%
38.99567191050804%
39.58056750504079%
40.172739082901636%
40.77245135613077%
41.37999223839477%
41.99567550190461%
42.61984383019676%
43.25287234061159%
43.895172667035965%
44.54719771472042%
45.20944722616039%
45.88247433208869%
46.56689330724679%
47.263388810526784%
47.972726968588255%
48.69576876871157%
49.433486371410815%
50.18698315232789%
50.95751856030661%
51.7465392710714%
52.55571868071775%
53.38700761086381%
54.24270033499423%
55.12552192866632%
56.03874591621829%
56.986355981090206%
57.97327350290041%
59.00568652891076%
60.09154082585585%
61.24130132912596%
62.46918883739732%
63.795307588848516%
65.24958544634976%
66.87982354979094%
68.77058140504862%
71.09802414324294%
74.36597547372776%
100%
来源: 百度百科
内容资源由项目单位提供