如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数),这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示1。
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差通常用字母d表示。
如果{cn},cn=an·bn,其中{an}为等差数列,{bn}为等比数列,那么这个数列就叫做差比数列.
等差数列(1)通项公式:an=a1+(n-1)d2
(2)通项公式的推广:任意两项,
的关系为
=
(3)从等差数列的定义、通项公式、前n项和公式可以推出:
,k∈{1,2,…,n}
(4)若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
(5)若m,n,p∈N*,且m+n=2p,则有am+an=2ap
(6)等差中项公式:若成等差数列,则有
(7)前n项和公式为:Sn=na1+[n(n-1)/2] d或Sn=(a1+an)n/2
等比数列(1)等比数列的通项公式是:
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2) 任意两项am,an的关系为=
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5) 等比数列前n项之和Sn=a1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1)
在等比数列中,首项a1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,
再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)^存期
差比数列定义{cn},cn=an·bn,其中{an}为等差数列,{bn}为等比数列,那么这个数列就叫做差比数列.由差比数列的定义可知,等差数列即当bn公比为1时差比数列的特殊形式,等比数列即当an公差为0时差比数列的特殊形式.差比数列的性质,就是由成倍递增的一组数所组成的数列.求和公式,可用错位相减法推出4。
对称公式对称数列的通项公式3:
对称数列总的项数个数:用字母s表示
对称数列中项:用字母C表示
等差对称数列公差:用字母d表示
等比对称数列公比:用字母q表示
设,k=(s+1)/2
相关信息一般通项一般有:
an=Sn-Sn-1 (n≥2)
累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)5。
特别的:
在等差数列中,总有Sn S2n-Sn S3n-S2n
2(S2n-Sn)=(S3n-S2n)+Sn
即三者是等差数列,同样在等比数列中。三者成等比数列
不动点法(常用于分式的通项递推关系)
特殊常见的①数列1,2,3,4,5,6,7,8……通项为
②数列1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......通项为an=1/n
③2,4,6,8,10,12,14.......通项为an=2n
④1,3,5,7,9,11,13,15.....通项为an=2n-1
⑤-1,1,-1,1,-1,1,-1,1......通项为an=(-1)^n
⑥1,-1,1,-1,1,-1,1,-1,1......通项为an=(-1)^(n+1)
⑦1,0,1,0,1,0,1,01,0,1,0,1....通项为an=[(-1)^(n+1)+1]/2
⑧1,0,-1,0,1,0,-1,0,1,0,-1,0......通项为an=cos(n-1)π/2=sinnπ/2
⑨9,99,999,9999,99999,.........通项为an=(10^n)-1
⑩1,11,111,1111,11111.......通项为an=[(10^n)-1]/9
⑾1,4,9,16,25,36,49,.......通项为an=n^2
⑿1,2,4,8,16,32......通项为an=2^(n-1)
前N项和(一)1.等差数列:
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
an=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则 A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即 Sn=a1+a2+...+an;
那么 Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法2 累加法 3倒序相加法
(二)1.等比数列:
通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1*q^(n-1),am=a1*q^(m-1)
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则 am×an=ap×aq
2.等比数列前n项和
设 a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
注: q不等于1;
Sn=na1 注:q=1
求和一般有以下5个方法: 1,完全归纳法(即数学归纳法) 2累乘法3错位相减法4倒序求和法5裂项相消法
本词条内容贡献者为:
杨磊 - 副教授 - 北京大学数学学院