简介

大气传输特性是指电磁波在大气中传输时辐射能量衰减的规律。因大气的吸收和散射,太阳辐射到地面目标以及地面物体反射或发射电磁波到传感器之间,辐射能量均会发生衰减。这种大气效应对遥感数据的质量及波段选择具有重要影响。有关电磁波在大气中传输的散射机制、吸收机制及其与电磁波波长的密切关系和大气的气象特性等,都是大气传输特性研究的主要内容。

大气散射作用太阳光在大气传输过程中,被散射和吸收,散射光可以由传播方向、频率、位相角、振幅和偏振表示。辐射度测量可以得到光的散射强度等参数,但是,大气散射辐射具有偏振特性,因此,进行偏振测量是有意义的。大气偏振信息的获取是基于偏振辐射的测量,在得到偏振信息的同时,也获得了辐射度信息1。大气散射辐射的偏振状态(或退偏振状态)对散射体的形状和尺度十分敏感。因而,可以根据偏振态随散射角等的变化,反演大气的光学和物理参数,即在分析测得的偏振特性的基础上,求得气溶胶的尺度谱、数密度、形状和折射率数据等。
分为:

分子散射亦称瑞利散射。其特点是辐射波长比散射粒子的尺寸大得多,散射系数与波长的4次方成反比。如太阳光中波长较短的蓝光被散射到地面,使天空呈蓝色。这种蓝色散射辐射在遥感中用处不大,航空摄影时用黄滤色镜滤掉;

气溶胶散射亦称米氏(Mie)散射。在雾、霄、雨和浑浊液体中成像由于粒子的散姑和吸收作用,拍摄的图像会发生不同程度的退化,导致成像模糊、对比度下降等问题2。发生在波长与散射粒子的大小差不多时。散射粒子如尘埃、烟雾、霾等。大气霾所产生的米氏散射往往会使光学波段的多波段影像质量变坏,这种散射还使云、雾呈白色;

非选择性散射即散射粒子的粒径比辐射波长大得多时发生的散射,散射系数与波长无关。当大气中充满大粒子尘埃时,常会出现这种散射,造成接收数据的严重衰减。大气的吸收作用表现在大气散射过程中,辐射一方面被大气粒子反射或折射,另一方面也被粒子吸收。如大气中的水汽、二氧化碳和臭氧,在某些波段会产生强烈的吸收带,削弱了大气对电磁波辐射的透明度,并造成了电磁波在大气传输中的一些不连续的“大气窗口”。这些大气窗口是电磁辐射在大气中传输损耗很小的波段,成为选择最佳工作波段的依据。

大气对辐射传输的影响大气散射
散射是指磁辐射在非均匀媒质或各向异性媒质中传播时,改变原来传播方向的现象。大气散射是电磁辐射能受到大气中微粒(悬浮粒子及大的分子如大气分子或气溶胶等)的影响,而改变传播方向的现象。其散射强度依赖于微粒大小、微粒含量、辐射波长和能量传播穿过大气的厚度。

A.选择性散射——散射强度与波长有关

a)瑞利散射(Rayleigh)
当引起散射的大气粒子直径远小于入射电磁波波长(dλ)时,出现无选择性散射。其散射强度与波长无关。大气中水滴、尘埃的散射属此类。它们一股直径5—100μm,并大约同等的散射所有可见光、近红外波段。正因为此类散射对所有可见光区段兰、绿、红光的散射是等量的,因而,我们观察云、雾呈白色、灰白色。
散射对遥感数据传输的影响极大。大气散射降低了太阳光直射的强度,改变了太阳辐射的方向,削弱了到达地面或地面向外的辐射,产生了天空散射光,增强了地面的辐照和大气层本身的“亮度”。它是造成遥感图像辐射畸变、图像模糊的主要原因。散射使地面阴影呈现暗色而不是黑色,使人们有可能在阴影处得到物体的部分信息。此外,散射使暗色物体表现得比它自身的要亮,使亮物体表现得比它自身的要暗。因此,它降低了遥感影像的反差(对比度),降低了图像的质量(清晰度)以及图像上空间信息的详度,因此,摄影像机等遥感仪器多利用特制的滤光片,阻止蓝紫光透过以消除或减少图像模糊,提高影像的灵敏度和清晰度。