定义

设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:

(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-);

(2)函数f(x)在点x0的左右极限中至少有一个不存在;

(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。

则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。

类型几种常见类型。1

可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。(图一)

跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。(图二)

无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。(图三)

振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。(图四)

可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。

由上述对各种间断点的描述可知,函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。

例子可去不连续点2

1. 考虑以下函数:

是可去不连续点。

2. 考虑以下函数:

是跳跃不连续点。

3. 考虑以下函数:

是第二类不连续点,又称本性不连续点。