血管紧张素Ⅱ受体拮抗剂即是血管紧张素受体阻滞剂,为一类高血压治疗药物。通过阻断AngⅡ效应降低血压。现已广泛用于临床。主要用于临床高血压病及其他心肾疾病的治疗。

血管紧张素Ⅱ在RAS中,十四肽的血管紧张素原(Ang)在肾素作用下,2个异亮氨酸间的肽链断裂,生成血管紧张素I (AngI), AngI在血管紧张素转换酶等酶的作用下,苯丙氨酸与组氨酸间肽链断裂,产生具有生理活性的AngII (八肽)。

AngII为强效血管收缩剂,是RAS中最重要的活性激素,在高血压的生理病理中起主要作用。AngII能引起小动脉收缩,使血管阻力增加;调节醛固酮的分泌(释放增加),使水、钠重吸收增强,血容量上升;也可引起心输出量增大;AngII还可使儿萘酚胺上升,在交感神经末梢则使去甲肾上腺素释放增加,同时使平滑肌细胞增生。1

血管紧张素Ⅱ受体AngII所具有的生物学效应由受体介导,经放射性配基络合法测定,AngII受体至少有2种类型(AT1,AT2),可能还有AT3、AT4等类型,均具种属和组织特异性。1

血管紧张素Ⅱ受体拮抗剂分类上市的AngII受体拮抗剂都是针对AT1型受体的。AT1拮抗剂抑制AngII介导的血管收缩、肾小管钠、水重吸收;抑制RAS对压力感受体反射的调控,提高敏感性,对交感神经兴奋具有抑制作用,并介导中枢及外周交感神经的加压作用。

临床使用的AT1受体拮抗剂为非肽类药物,依据结构可分为2类:

1、联苯四氮唑类,包括氯沙坦(losartan)、缬沙坦(valsartan)、厄贝沙坦(irbesartan)、坎地沙坦酯(candesartan cilexetil)及他索沙坦(tasosartan)。

2、非联苯四氮唑类,包括依普罗沙坦(eprosartan)及替米沙坦(telmisartan)。上述化合物具有以下结构特征:

(1)以三级取代的N为核心,N上的孤电子对可能作为氢受体形成氢键;

(2)N上的1个取代基为亲脂性的芳环,除依普罗沙坦为苯环外,其余均为联苯取代;

(3)芳环上有1个离子性酸性基团,如四氮唑或羧酸,可能与受体形成离子键;

(4)N上的另两个取代基可不成环(如缬沙坦)亦可成环。其中1个取代基具有亲脂性,1个取代基上含有可作为氢受体的杂原子如O、N。1

其他作用保护肾功能,延缓肾脏病进展

现已认识到ATⅡ在高血压肾脏损害特别是糖尿病肾病恶化中起重要作用,ATⅡ介导的肾小球小动脉的收缩,导致肾小球毛细血管性高血压,并通过其他机制损害肾脏,包括升高肾小球压力而增加系膜巨分子流入,刺激细胞因子及系膜基质的扩张,ATⅡ还增加蛋白尿。因此,应用AT1受体亚型拮抗剂具有明显的肾脏保护效应,特别是对糖尿病性肾病的恶化有逆转作用。抑制ATⅡ可使肾小球出球小动脉松弛,降低肾小球毛细血管压力,减低蛋白尿而延缓肾脏病进展。据最近一项氯沙坦与氨氯地平对高血压病伴肾脏损害的4周对比研究,前者降低肾脏损害患者的尿蛋白排出,总蛋白及白蛋白排泄减少25%,而后者无此作用(P40%,12周时停药则血压及蛋白尿恢复到治疗前水平。氯沙坦与依那普利的抗蛋白尿及降压效应和肾脏血流动力学效应[有效肾血浆流量、滤过分数及肾小球滤过率(GFR)]两药相似,支持氯沙坦临床改善血压、肾血流动力学及蛋白尿与ACEI相似,是通过抑制ATⅡ引起的。因此,一项大规模用氯沙坦减少非胰岛素依赖型糖尿病病人1500例重点试验(RENAAL)正在进行,其结果将澄清氯沙坦对肾功能不全的肾脏保护作用。也有研究血管紧张素转换酶(ACE)基因表型与沙坦类关系,DD型较ID或II型患者用ACEI后尿蛋白减少较少,甚至有些病人微蛋白尿不断恶化,但ID或Ⅱ型患者用ACEI后则减轻。这种差别被认为是DD型患者ACE水平最高,用ACEI不足以完全抑制其活性,而沙坦类药物可能更有效。一项正常人及肾功能损害患者肾血流动力学影响及高血压病人服用氯沙坦对肾功能影响和肾病综合征有或没有肾功能损害患者的研究中,发现氯沙坦可使平均动脉压下降,有效肾血液流量可以增加,而对GFR无影响。对肾血流动力学的这些良好影响,也是进行RENAAL试验的依据之一。

逆转左室肥厚和血管重塑等效应

左室肥厚(LVH)为心血管病的独立危险因素,沙坦类药物对降低LVH有明显的作用。1997在意大利召开的第八届欧洲高血压会议上有报道缬沙坦对于左室肥厚的疗效,经超声心动确定有LVH的高血压病患者,以缬沙坦80 mg/d与氨酰心安50 mg/d相比较,经4周治疗DBP仍>95 mm Hg,则将药物加倍4周后DBP仍>95 mm Hg者加氯噻嗪,两组中各有30%病人加利尿剂。3及8个月后超声心动复查,69例随机病人中对58例作左室质量指数分析(LVMI),结果缬沙坦组(29例)LVMI平均下降10 g/mm2,较基线下降8%。显然ATⅡ参与LVH形成,而AT1受体亚型拮抗剂阻断ATⅡ,可使LVH逆转。

对高血压及动脉粥样硬化中血管重塑的作用,据近年细胞及分子研究已经明确ATⅡ在动脉粥样硬化形成中调节许多关键性步骤,可能调节白细胞与内皮细胞之间的相互作用。许多黏附分子如E-选择素及血管黏附分子(VCAM-1)促进白细胞及单核细胞黏向内皮细胞的管腔面,认为这是高血压或动脉粥样硬化血管病变形成的第一步。ATⅡ在培养的内皮细胞中刺激黏附分子的表达,亦提示肽类可促进白细胞黏附到血管壁。因此,不仅ACEI,AT1受体亚型拮抗剂亦可改变高血压及动脉粥样硬化病人动脉结构与功能,这对于血管重塑的防治可能有重要意义,但尚需更多研究。

AT1受体亚型拮抗剂对纤溶功能也有影响,若因纤溶酶原激活物抑制物1(PAI-1)的升高而纤溶能力下降可增加冠心病的危险。已有资料发现某些病人基因上易产生血浆PAI-1升高。PAI-14G纯合子及4G/5G杂合子患者血浆PAI-1水平增高增加发生心肌梗死的危险,5G纯合子病人PAI-1水平低,心肌梗死危险性低。因内皮性PAI-1的产生及分泌由ATⅡ调节,而组织型纤溶酶原激活物的产生及分泌由缓激肽所调节。内皮ACE通过双向作用降解缓激肽并使AT1转变为ATⅡ而促进血栓形成。因此,用ACEI及AT1受体亚型拮抗剂通过双向抑制而增强纤溶功能,减少血栓形成[9]。另外,还有用氯沙坦用于预先处理的荷兰猪心室肌上,可减少再灌注心律失常,提示有内源性抗心律失常作用,并有降解尿酸,抑制血栓烷(TX)A2的效应。但candesartan不能抑制TXA2引起的血小板聚集[8]。这些初步研究对心血管病防止血栓栓塞方面也可能有应用价值。

综上所述,ATⅡ受体拮抗剂(AT1受体亚型拮抗剂)作为新的一类降压药物,在心力衰竭、肾脏病及许多心脏肾血管病的防治中可能较广泛的前景。最近,WHO/ISH1999高血压指南中已将ATⅡ受体拮抗剂列入治疗高血压的六大类药物之一[20]。但仍存在许多问题,如它是否优于ACE I,与ACEI是否有互补不足,长期应用的利弊如何,有待从基础理论及临床大规模多中心的长期实践中来解决。正在进行的多项国际性大样本随机试验如LIFE、ELITE-Ⅱ、VALUE、RENAAL等或将有助于明确AT1受体亚型拮抗剂在心脏血管病防治中的地位。

基础特性ATⅡ刺激在体内引起许多生理性反应以维持血压及肾脏功能。在高血压病、动脉疾病、心脏肥大、心力衰竭及糖尿病、肾病等的发病机制上都起着主要的作用。血管紧张素转换酶抑制剂(ACEI)部分阻断ATⅡ的形成,对上述心脏血管疾病产生了显著的治疗效应,但小部分的病人因干咳不能耐受,从而促使研制出完全阻断ATⅡ效应的ATⅡ受体拮抗剂,为心脏血管病的防治展现了一幅新的宽广前景。 特别是替米沙坦的出现,真正维持了24小时,服用一个月达到稳定的血浓度,即使突然停药也不会出现反跳。

已应用于临床或正进行临床试验的AT1受体亚型拮抗剂已有10多种。研究与应用最早与最多的是氯沙坦,其次是缬沙坦。各种AT1受体亚型拮抗剂的临床前药理作用大体相似。阻滞AT1的特异性相同,但拮抗AT1的强度、选择性作用AT1与AT2的比值、化学活性物质不尽相同。根据检测条件,选择性阻滞AT1受体亚型较AT2受体亚型的强度比值各个沙坦类药物都在10000倍以上,缬沙坦最强,在人子宫肌层对AT1较对AT2受体亚型亲和力强3000倍[6]。化学活性有的是母体,有的是代谢物。氯沙坦的特点为母体及其代谢物E~3174都有活性且E~3174 aT1受体亚型亲和力强于母体10倍,清除半衰期(t1/2β)亦较母体明显延长。

临床应用沙坦类药物在国外已较广泛用于临床高血压病及其他心肾疾病的防治,国内应用最多的是氯沙坦、缬沙坦。

经过循证医学分析,9种ARBs对13451位受试者持续7周治疗的血压降低效果,结论为效果不大: 收缩压−8mmHg及舒张压−5mmHg。降压效果大部分(约70%)都来自于最低推荐剂量。各种ARBs的降压效果都比较相似。

高血压病以氯沙坦治疗高血压病已有很多研究[7-10]。但多项安慰剂对照的研究中,氯沙坦50~100 mg/d,4~12周对轻中度高血压有明显降压作用。至1996年治疗人数3700余人。以谷值舒张压(DBP)0.05[12]。一项63个中心参加的瑞典、芬兰、澳大利亚轻中度高血压898例随机双盲氯沙坦与氨氯地平的降压效果与药物耐受性的研究,为期12周,结果降压有效性在氯沙坦50~100 mg/d组与氯沙坦50 mg/d+氯噻嗪12.5 mg组及氨氯地平5~10 mg/d组均相仿;但以精神性感觉记分(PGWB)评定生活质量则氯沙坦两组明显改善,氨氯地平组改善较少;药物有关的副作用特别是踝部水肿及其他不适发生率,氨氯地平从基线时8.4%及23.3%分别增至30.6%(P