简介

从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。

公式:全排列数f(n)=n!(定义0!=1),如1,2,3三个元素的全排列为:

1,2,3

1,3,2

2,1,3

2,3,1

3,1,2

3,2,1

共3*2*1=6种。

方法以下介绍全排列算法四种:

(A)字典序法

(B)递增进位制数法

(C)递减进位制数法

(D)邻位对换法

字典序法对给定的字符集中的字符规定了一个先后关系,在此基础上规定两个全排列的先后是从左到右逐个比较对应的字符的先后。

[例]字符集{1,2,3},较小的数字较先,

这样按字典序生成的全排列是:123,132,213,231,312,321。

[注意] 一个全排列可看做一个字符串,字符串可有前缀、后缀。

1)生成给定全排列的下一个排列 所谓一个的下一个就是这一个与下一个之间没有其他的。这就要求这一个与下一个有尽可能长的共同前缀,也即变化限制在尽可能短的后缀上。

[例]839647521是1--9的排列。

1—9的排列最前面的是123456789,最后面的是987654321,从右向左扫描若都是增的,就到987654321,也就没有下一个了。否则找出第一次出现下降的位置。

[序数公式]

有从 1 到 n 的连续的 n 个自然数,其全排列按照从小到大排列,次序从 0 到 n!-1 ,总共 n! 个。现有其全排列中的一组 “……”,其全排列次序为:

递增进位制数法1)由排列求中介数 在字典序法中,中介数的各位是由排列数的位决定的.中介数位的下标与排列的位的下标一致。

在递增进位制数法中,中介数的各位是由排列中的数字决定的。即中介数中各位的下标与排列中的数字(2—n)一致。可看出n-1位的进位链。 右端位逢2进1,右起第2位逢3进1,…,

右起第i位逢i+1进1,i=1,2,…,n-1. 这样的中介数我们称为递增进位制数。 上面是由中介数求排列。

由序号(十进制数)求中介数(递增进位制数)如下:

m=m1,0≤m≤n!-1

m1=2m2+kn-1,0≤kn-1≤1

m2=3m3+kn-2,0≤kn-2≤2

……………

mn-2=(n-1)mn-1+k2,0≤k2≤n-2

mn-1=k1,0≤k1≤n-1

p1p2…pn←→(k1k2…kn-1)↑←→m

在字典序法中由中介数求排列比较麻烦,我们可以通过另外定义递增进位制数加以改进。

为方便起见,令ai+1=kn-1,i=1,2,…,n-1

(k1k2…kn-1)↑=(anan-1…a2)↑

ai:i的右边比i小的数字的个数

在这样的定义下,

有839647521←→(67342221)↑

(67342221)↑+1=(67342300)↑←→849617523

6×8+7)×7+3)×6+4)×5+2)×4+2)×3+2)×2+1 =279905

由(anan-1…a2)↑求p1p2…pn。

从大到小求出n,n-1,…,2,1的位置

_ ... _ n _ _ …_ (an个空格)

n的右边有an个空格。

n-1的右边有an-1个空格。

…………

2的右边有a2个空格。

最后一个空格就是1的位置。

递减进位制数法在递增进位制数法中,中介数的最低位是逢2进1,进位频繁,这是一个缺点。

把递增进位制数翻转,就得到递减进位制数。 (anan-1…a2)↑→(a2a3…an-1an)↓

839647521→ (12224376)↓

(12224376)↓=1×3+2)×4+2)×5+2)×6+4)×7+3)×8+7)×9+6=340989

[注意]求下一个排列十分容易

邻位对换法递减进位制数法的中介数进位不频繁,求下一个排列在不进位的情况下很容易。

这就启发我们,能不能设计一种算法,下一个排列总是上一个排列某相邻两位对换得到的。

递减进位制数字的换位是单向的,从右向左,而邻位对换法的换位是双向的。 这个算法可描述如下:

对1—n-1的每一个偶排列,n从右到左插入n个空档(包括两端),生成1—n的n个排列。

对1—n-1的每一个奇排列,n从左到右插入n个空档,生成1—n的n个排列。

对[2,n]的每个数字都是如此。

839647521

字典序法 递增进位制法 递减进位制法 邻位对换法

下一个 839651247 849617523 893647521 836947521

中介数 72642321↑ 67342221↑ 12224376↓ 10121372↓

序 号 297191 279905 340989 203393

生成树生成树中介数可以采用树的结构表示全排列生成算法,以数字的全排列生成算法为例,从最小的数1开始,其全排列只有一种可能;加入数字2,数字2可以插入在1的后边或前边,有两个不同位置;

再加入3,对于第二层中的每一种不同排列,都可以通过将3插入不同位置得到三种不同的排列数,共有6种排列数;一次类推可以得到 个数的全排列。

基于此,可以构造一种新的中介数,其定义如下:

对于生成树中的第n层,每一个节点中介数的前n-2位继承于其父节点的中介数,中介数最后一位为该层新加入的数 减去其右边相邻的数。

如果新加入的数在最右边,则中介数最后一位为0。

如图所示,排列数12的中介数为0,对于生成树第三层由节点12扩展得到的新节点,当新加入的数3位于最右边时(即排列数123),对应的中介数为00;若3插入12中间,则中介数末位为3-2=1,即中介数为01;类似地排列数312对应的中介数为02。

不难看出,生成树中介数也是递减进位制数,但和递减进位制数法是不同的。如排列数231对应的生成树中介数为12,而递减进位制数法对应的中介数为11。

算法完备性不难看出,全排列生成树每一层的不同节点对应的中介数都是不同的,这是因为:

(1)每个子节点中介数的前缀都从其父节点继承得到,因此不同父节点生成的子节点中介数一定不同;

(2)同一个父节点生成的子节点,父节点的排列数每一位都是不同的,因此新加入的数插入不同位置得到的中介数的最后一位一定是不同的。

由以上两点及归纳法即可证明生成树每一层不同节点对应的中介数都是唯一不重复的。又全排列生成树每一个节点的排列数是无重复无遗漏的,因此从中介数到排列数的映射是一一对应的,从而基于生成树中介数的全排列生成算法是完备的。

计算排列数由生成树中介数还原排列数的过程实际上就是全排列生成树的构建过程。以生成树中介数121为例:

(1)中介数第一位是1,说明2在1的左边,得到21;

(2)中介数第二位为2,只能由3-1得到,说明3在1的左邻,得到231;

(3)中介数第三位为1,只能由4-3得到,说明4在3的左邻,得到2431.

对于任意的生成树中介数,都通过类似的过程计算对应的排列数。不难看出,从生成树中介数还原排列数的时间复杂度也是 。

递归递归:设(ri)perm(X)表示每一个全排列前加上前缀ri得到的排列.当n=1时,perm(R)=(r) 其中r是唯一的元素,这个就是出口条件.

当n>1时,perm(R)由(r1)perm(R1),(r2)perm(R2),...(rn)perm(Rn)构成1.

voidPerm(list[],intk,intm)//k表示前缀的位置,m是要排列的数目.{if(k==m-1)//前缀是最后一个位置,此时打印排列数.{for(inti=0;i