作用机理层析机理
对于黄酮类和多酚类化合物, 因为其富含酚羟基, 可通过分子中的酚羟基与聚酰胺分子中的酰胺基形成氢键缔合产生吸附。吸附的强度主要取决于这两种化合物中羟基的数目与位置、以及溶剂与化合物或溶剂与聚酰胺之间形成氢键的缔合能力大小。溶剂分子与聚酰胺或黄酮类化合物形成氢键缔合的能力越强, 则聚酰胺对这两种化合物的吸附作用将越弱。聚酰胺层析柱即是利用此性质对各种植物中黄酮、茶多酚等进行吸附、洗脱而分离的, 即所谓的“氢键吸附”学说。对聚酰胺层析的分离机理, 除了“氢键吸附”学说外还有“双重层析”理论。前者不能解释当以氯仿-甲醇为洗脱液时, 为何黄酮甙元比黄酮甙先洗脱下来。后者认为当用极性流动相(含水溶剂系统)洗脱时, 聚酰胺作为非极性固定相, 其层析行为类似反相分配层析, 当用有机溶剂洗脱时, 聚酰胺作为极性固定相, 其层析行为类似正相分配层析。但固定相(吸附剂)的极性是由其本身结构及性质决定的, 不应随洗脱液的改变而改变, 况且聚酰胺层析属于吸附层析, 不是分配层析。因此, “双重层析理论”也没有揭示出产生这两种相反现象的根本原因。
洗脱机理聚酰胺分子中有极性酰胺基团和非极性的脂肪键。作为一个相对弱极性的化合物, 当移动相为极性强的溶剂(如水、乙醇、丙酮等)时, 聚酰胺作为非极性固定相, 其层析行为类似反相分配层析, 极性较大的吸附物易被洗脱。随着洗脱剂极性降低, 极性较小的化合物可相继被洗脱下来1。
过程层析柱的制备若用含水溶剂系统层析,常以水装柱。在以非极性溶剂系统层析时,常以溶剂组份中极性低的组份装柱。若以氯仿装柱,因其比重较大,使聚酰胺粉浮在上面,加样时应将柱底端的氯仿层放出,并立即加样,加样后顶端以棉花塞紧,在层析关闭时,应将顶端的多余氯仿液放出,否则,聚酰胺会浮起而搅乱层析带。
加样聚酰胺的样品容量较大,一般每100 ml聚酰胺粉可上样1.5~2.5g,可根据具体情况适当增加或减少。若利用聚酰胺除去鞣质,样品上柱量可大大增加,通常观察鞣质在柱上形成的橙红色色带的移动,当样品加至该色带移至柱的近底端时,停止加样。样品常用洗脱剂溶解,浓度在20~30%。不溶样品可用甲醇、乙醇、丙酮、乙醚等易挥发溶剂溶解,拌入聚酰胺干粉中,拌匀后将溶剂减压蒸去,以洗脱剂浸泡装入柱中。
洗脱聚酰胺层析的洗脱剂常采用水-乙醇(10%、30%、50%、70%、95%),氯仿-甲醇(19:1,10:1,5:1,2:1,1:1)依次洗脱。若仍有物质未洗脱下来,可采用3.5%氨水洗脱。洗脱剂的更换,一般根据流出液的颜色,当颜色变为很淡时更换下一种溶剂,并以适当体积分瓶收集,分瓶浓缩。各瓶浓缩液以聚酰胺薄膜层析检查其成分,成分相同者合并。再进入下一步纯化。
应用在黄酮类化合物提取分离中的应用从天然药物中分离黄酮类化合物的方法较多, 较常用的是聚酰胺色谱。不同的黄酮类化合物在聚酰胺上的层析行为有一定的规律性, 而影响聚酰胺吸附能力的因素很多, 主要有:(1)与黄酮类化合物分子重形成氢键的基团庶母多少有关, 能形成氢键的基团数目越多则吸附力越强;(2)与形成氢键基团的位置有关, 如所处位置易于形成分子内氢键, 则吸附能力减小。(3)分子内芳香化程度越高, 共轭双键越多, 则吸附力越强。(4)不同类型黄酮类化合物, 被吸附强弱顺序为:黄酮醇>黄酮>二氢黄酮醇>异黄酮。(5)与溶剂介质有关。在水中形成氢键的能力强, 吸附强, 在有机溶剂中则较弱, 在酸性溶剂中强, 碱性溶剂中最弱, 因此各种溶剂在聚酰胺柱上的洗脱能力由弱至强的顺序为:水