简介
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线(见右图)。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物面和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点或焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。
也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。
椭圆在物理,天文和工程方面很常见。例如,我们的太阳系中的每个行星的轨道大约是一个椭圆,其中一个焦点上的行星 - 太阳对的重心。卫星轨道行星和所有其他具有两个天文体的系统也是如此。行星和星星的形状通常被椭球描述。椭圆也出现在平行投影下的圆形图像和透视投影的有界壳体,这是投影锥体与投影平面的简单交点。当水平和垂直运动是具有相同频率的正弦波时,它也是形成最简单的李萨如图。类似的效果导致光学中的光的椭圆偏振。
名叫ἔλλειψις(élleipsis,“遗漏”)由佩尔加的Apollonius在他的Conics中给出,强调了曲线与“应用领域”的联系。
研究历史阿波罗尼奥斯所著的八册《圆锥曲线论(Conics)》中首次提出了今日大家熟知的 ellipse(椭圆)、parabola(抛物线)、hyperbola(双曲线)等与圆锥截线有关的名词,可以说是古希腊几何学的精擘之作。3直到十六、十七世纪之交,开普勒(Kepler)行星运行三定律的发现才知道行星绕太阳运行的轨道,是一种以太阳为其一焦点的椭圆。4
定义第一定义平面内与两定点 、
的距离的和等于常数
(
)的动点P的轨迹叫做椭圆。
即:
其中两定点 、
叫做椭圆的焦点,两焦点的距离
叫做椭圆的焦距。
为椭圆的动点。
椭圆截与两焦点连线重合的直线所得的弦为长轴,长为
椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为
可变为
第二定义椭圆平面内到定点 (c,0)的距离和到定直线
:
(
不在
上)的距离之比为常数
(即离心率
,0((a^2)-(xp^2))(k^2)+2xpypk+((b^2)-(yp^2));
由根的判别式得:4((xpyp)^2)-4((a^2)-(xp^2))((b^2)-(yp^2))=0;
所以k值有唯一解:k=(-2xpyp)/(2((a^2)-(xp^2)))=-xpyp/((a^2)-(xp^2));
由式1得:(a^2)-(xp^2)=(ayp/b)^2=>k=-(xp(b^2))/(yp(a^2));
m=yp-kxp=(((ypa)^2)+((xpb)^2))/(yp(a^2))=((ab)^2)/(yp(a^2))=(b^2)/yp;
设A0F1、B0F2分别过F1、F2垂直AB于A0、B0;
A0F1:(y-0)=(-1/k)(x+c)=>x+ky+c=0-----式3;
联立式2和式3消去y得:x=-(km+c)/((k^2)+1);
联立式2和式3消去x得:y= (m-kc)/((k^2)+1);
则:A0:(-(km+c)/((k^2)+1),(m-kc)/((k^2)+1));
|A0F1|^2=((m-kc)^2)/((k^2)+1));
同理:B0F2:(y-0)=(-1/k)(x-c);
=>B0:((c-km)/((k^2)+1),(m+kc)/((k^2)+1));
|B0F2|^2=((m+kc)^2)/((k^2)+1));
|PF1|^2=((xp+c)^2)+(yp^2);
|PF2|^2=((xp-c)^2)+(yp^2);
证明:若∠APF1=∠BPF2,则直角三角形A0PF1与直角三角形B0PF2相似;
=>|A0F1|/|PF1|=|B0F2|/|PF2|
=>(|A0F1|^2)/(|PF1|^2)=(|B0F2|^2)/(|PF2|^2)
=>(|PF2|^2)/(|PF1|^2)=(|B0F2|^2)/(|A0F1|^2)
((m+kc)^2)/((m-kc)^2)=(((xp-c)^2)+(yp^2))/(((xp+c)^2)+(yp^2));-----式4
m+kc=(b^2)/yp-(xpc(b^2))/(yp(a^2))=((a^2)-xpc)(b^2)/(yp(a^2));-----式5
m-kc=(b^2)/yp+(xpc(b^2))/(yp(a^2))=((a^2)+xpc)(b^2)/(yp(a^2));----式6
把式5和式6代入式4得:
(((a^2)-xpc)^2)/(((a^2)+xpc)^2)=(((xp-c)^2)+(yp^2))/(((xp+c)^2)+(yp^2));
=>(((a^2)-xpc)^2)(((xp+c)^2)+(yp^2))=(((a^2)+xpc)^2)(((xp-c)^2)+(yp^2))
=>(((a^2)-xpc)^2)((xp+c)^2)+(((a^2)-xpc)^2)(yp^2)=(((a^2)+xpc)^2)((xp-c)^2)+(((a^2)+xpc)^2)(yp^2)
=>[(((a^2)-xpc)^2)((xp+c)^2)-(((a^2)+xpc)^2)((xp-c)^2)]=[(((a^2)+xpc)^2)-(((a^2)-xpc)^2)](yp^2)
=>[((a^2)-xpc)(xp+c)+((a^2)+xpc)(xp-c)][((a^2)-xpc)(xp+c)-((a^2)+xpc)(xp-c)]=4xpc(ayp)^2
=>(2(a^2)xp-2(c^2)xp)(2c(a^2)-2c(xp^2))=4xpc(ayp)^2
=>4xpc(b^2)((a^2)-(xp^2))=4xpc(ayp)^2
=>(b^2)((a^2)-(xp^2))=(ayp)^2
=>(ab)^2=((ayp)^2)+((bxp)^2)
=>((xp^2)/(a^2))+((yp^2)/(b^2))=1等式成立,∠APF1=∠BPF2得证
内点,外点设F1、F2为椭圆C的两个焦点,P为C上任意一点,则在椭圆焦点三角形F1PF2中,分别称∠F1PF2的内角平分线,外角平分线与椭圆长轴的交点为内点,外点。(如右图中的N,M点为内点,外点)
可以证明以下命题:在椭圆焦点三角形中: ( 1)内点到一焦点的距离与以该焦点为端点的焦半径之比为e(离心率)(2)内心将内点与非焦顶点连线段分成定必e (3)半焦距为内点,外点到椭圆中心距离的比例中项 证明:(1):在椭圆焦点三角形F1PF2中,设N为内点, 由内角平分线性质和合比性质得 : NF1 /PF1= NF2/PF2=(NF1+NF2 )/(PF1+PF2)=2C/2a=e (2) :设 内心为Q,则F1Q是∠F2F1P的内角平分线 ,则在△F1PN中,有QP/PF1=QN/NF1 ∴QN/QP=NF1/PF1 由(1)知NF1 /PF1=e 故QN/QP=e (3):设M是外点,由外角平分线和内角平分线性质:MF1/MF2=PF1/PF2=NF1/NF2 故(OM-c)/(OM+c)=(c-ON)/(c+ON) 故ON×OM=c²
光学性质)椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。
相关公式面积公式 (其中
分别是椭圆的长半轴、短半轴的长),或
(其中
分别是椭圆的长轴,短轴的长)。
证: 的面积,由于图形的对称性可知,只要求出第一象限的面积乘以4即可。
在第一象限 , 令
周长椭圆周长计算公式:L=T(r+R)
T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。
椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。
附椭圆系数简表:
|| ||
椭圆与三角函数的关系关于椭圆的周长等于特定的正弦曲线在一个周期内的长度的证明:
半径为r的圆柱上与一斜平面相交得到一椭圆,该斜平面与水平面的夹角为α,截取一个过椭圆短径的圆。以该圆和椭圆的某一交点为起始转过一个θ角。则椭圆上的点与圆上垂直对应的点的高度可以得到f(c)=r tanα sin(c/r)
r:圆柱半径
α:椭圆所在面与水平面的角度
c:对应的弧长(从某一个交点起往某一个方向移动)
以上为证明简要过程,则椭圆(x*cosα)^2+y^2=r^2的周长与f(c)=r tanα sin(c/r)的正弦曲线在一个周期内的长度是相等的,而一个周期T=2πr,正好为一个圆的周长。
这是我在工作的时候,偶尔发现的,没有引用,也没有搜索到相关的文献,可能有前辈在我之前就发现了,若有不妥,请谅解。
离心率椭圆离心率的定义为椭圆上焦距与长轴的比值,(范围:0|FF'|)的动点P的轨迹叫做椭圆),可演变为z=√x^2-y^2(x>y>0)。Z两端点F、F'为定点。取有韧性切伸缩系数越小越好的线,环绕线段AF'或者FB线段任意一组为长度,以该长度为固定三角形周长,以F、F' 为定点、取构成该三角形上的第三点为动点画弧则构成该椭圆。4
手绘法三环线长。根据椭圆的图形特征,采用环线表示动点与焦点间的距离关系,形成统一的圆形环线作图法。具体方法简介:(1)作图工具为笔、大头针、直尺和环形线。(环形线制作:取一段长度(30—50cm)和粗细适中弹性小的软线、一段8mm长细电线空塑料管,软线从塑料管中相向窜过,塑料管将软线夹紧,但用力可以抽动,形成能收缩和放长的环形线)。(2)在作图平面上作出各种圆形的定点和动点。(3)将大头针分别直立、固定在定点上;(4)将符合长度的环形线套在大头针外,画笔由内向外拉直环线,通过调整环线的长度使笔尖刚好落在动点上;(5)将画笔移动一周,即可作出各种圆的图形。
环线作图方法的最大特点,就是把圆形的动点与焦点间的距离关系以环线的方式联系起来,而不受焦点数目的影响,环线内可以容纳任意焦点数目,为探讨3个及其3个以上焦点数目的多焦点圆提供有效方法。环线作图方法,属于连续移动作图法,适合不同大小的圆、椭圆和卵圆等作图。
若用该方法画规定半长轴a和半短轴b的椭圆,则 ,环线长
计算机方面Ellipse函数
函数功能
该函数用于画一个椭圆,椭圆的中心是限定矩形的中心,使用当前画笔画椭圆,用当前的画刷填充椭圆。
函数原型
BOOL Ellipse(HDC hdc,int nLeftRect,int nTopRect,nRightRect,int nBottomRect).
参数
hdc:设备环境句柄。
nLeftRect:指定限定椭圆左上角的X坐标。
nTopRect:指定限定椭圆左上角的Y坐标。
nRightRect:指定限定椭圆右下角的X坐标。
nBottomRect:指定限定椭圆右下角的Y坐标。3
返回值
如果函数调用成功,返回值非零;如果函数调用失败,返回值是0。
计算机图形学约束
椭圆必须一条直径与x轴平行,另一条直径y轴平行。不满足此条件的几何学椭圆在计算机图形学上视作一般封闭曲线。5
来源: 百度百科