一、模糊语句
将含有模糊概念的语法规则所构成的语句称为模糊语句。根据其语义和构成的语法规则不同,可分为以下几种类型:
(1)模糊陈述句:语句本身具有模糊性,又称为模糊命题。如:“今天天气很热”。
(2)模糊判断句:是模糊逻辑中最基本的语句。语句形式:“x是a”,记作(a),且a所表示的概念是模糊的。如“张三是好学生”。
(3)模糊推理句:语句形式:若x是a,则x是b。则为模糊推理语句。如“今天是晴天,则今天暖和”。
二、模糊推理
常用的有两种模糊条件推理语句:If A then B else C;If A AND B then C
常用的模糊推理方法有两种:Zadeh法和Mamdani法。Mamdani推理法是模糊控制中普遍使用的方法,其本质是一种合成推理方法。
模糊推理语句“If A AND Bthen C”确定了三元模糊关系R,即:
R=(A×B)T1×C
其中(A×B)T1为模糊关系矩阵(A×B) (m×n)构成的m×n列向量,n和m分别为A和B论域元素的个数。
基于模糊推理规则,根据模糊关系R,可求得给定输入A1和B1对应的输出C1:
C1=(A1×B1)T2R
式中, (A1×B1)T2 为模糊关系矩阵(A1×B1)(m×n)构成的m×n列向量,T2为行向量转换。
模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过程的一种智能控制方法。该方法首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上。
三、模糊控制器(FuzzyController—FC)也称为模糊逻辑控制器(Fuzzy Logic Controller—FLC),由于所采用的模糊控制规则是由模糊理论中模糊条件语句来描述的,因此模糊控制器是一种语言型控制器,故也称为模糊语言控制器(Fuzzy Language Controller—FLC)。
1 模糊化接口(Fuzzyinterface)
模糊控制器的输入必须通过模糊化才能用于控制输出的求解,因此它实际上是模糊控制器的输入接口。它的主要作用是将真实的确定量输入转换为一个模糊矢量。对于一个模糊输入变量e,其模糊子集通常可以作如下方式划分:
(1)e={负大,负小,零,正小,正大}={NB,NS, ZO, PS, PB}
(2)e={负大,负中,负小,零,正小,正中,正大}={NB, NM, NS, ZO, PS, PM, PB}
(3)e={负大,负中,负小,零负,零正,正小,正中,正大}={NB, NM, NS, NZ, PZ, PS, PM, PB}
2 知识库(Knowledge Base—KB)
知识库由数据库和规则库两部分构成。
(1)数据库(DataBase—DB) 数据库所存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值(即经过论域等级离散化以后对应值的集合),若论域为连续域则为隶属度函数。在规则推理的模糊关系方程求解过程中,向推理机提供数据。
(2)规则库(RuleBase—RB) 模糊控制器的规则司基于专家知识或手动操作人员长期积累的经验,它是按人的直觉推理的一种语言表示形式。模糊规则通常有一系列的关系词连接而成,如if-then、else、also、end、or等,关系词必须经过“翻译”才能将模糊规则数值化。最常用的关系词为if-then、also,对于多变量模糊控制系统,还有and等。
规则库是用来存放全部模糊控制规则的,在推理时为“推理机”提供控制规则。规则条数和模糊变量的模糊子集划分有关,划分越细,规则条数越多,但并不代表规则库的准确度越高,规则库的“准确性”还与专家知识的准确度有关。
3 推理与解模糊接口(Inferenceand Defuzzy-interface)
推理是模糊控制器中,根据输入模糊量,由模糊控制规则完成模糊推理来求解模糊关系方程,并获得模糊控制量的功能部分。在模糊控制中,考虑到推理时间,通常采用运算较简单的推理方法。最基本的有Zadeh近似推理,它包含有正向推理和逆向推理两类。正向推理常被用于模糊控制中,而逆向推理一般用于知识工程学领域的专家系统中。
推理结果的获得,表示模糊控制的规则推理功能已经完成。但是,至此所获得的结果仍是一个模糊矢量,不能直接用来作为控制量,还必须作一次转换,求得清晰的控制量输出,即为解模糊。通常把输出端具有转换功能作用的部分称为解模糊接口。
来源: 部分来自网络